Power Distribution – To Route, or to Plane

Power distribution on a PCB can come in a number of forms. The three most common methods are:

  • Route power and ground.
  • Use surface layer floods.
  • Use internal planes.

After component positioning, you’ll need to look at power and ground distribution. With a two-layer board, your options are limited to individually routing power and ground, or using a polygon fill, also called a flood or pour.

 

 

 

 

For simple low-speed layouts, it’s common to route power just like any other signal. You’ll typically use a wider trace, which you can set manually, or with design rules. Drawing a polygon in the board shape, and giving it the same name as your power or ground signals may make the job easier. Keep in mind though, that you can end up with parts of a ground plane disconnected from the rest of the board. This is called an orphan. Some CAD error checks will spot such a problem and some won’t.

I made that mistake not long ago, as describe in this blog post.

If you have a four (or more) layer board, common practice is to designate one of the internal layers for ground, and one for power.

 

 

 

 

 

 

Doing so can leave more room for signal routing, can reduce EMI, and can leave a cleaner-looking, easier-to-debug board. It also reduces the chances of having orphan ground or power areas, as I warned against in the prior post.

Duane Benson
Chocolate layer cake with coconut frosting will not help with EMI

http://blog.screamingcircuits.com/

Basic Layout — Aligning Components

Not long ago, I designed an Arduino compatible clock board. The board has 12 NeoPixel (digital addressed RGB LEDs) arranged around the board to act as hour hands. The minutes and seconds are represented by an external ring of 60 NeoPixels.

 

 

 

 

 

 

 

 

 

 

How did I go about positioning the 12 NeoPixels, and what does it matter? For aesthetic reasons, I do want each NeoPixel in the proper place. If any are off a bit, I’ll notice every time I look at the clock.

I created a triangle, with all of the correct distances, and drew in in my CAD software’s Document layer. The Document layer looks just like a silk screen layer, when visible, but it won’t be printed on the board. You can use this layer to put in extra information for yourself, or for the manufacturer.

 

 

 

 

 

 

 

 

 

 

You’ll notice that I also wrote in the document layer “No tabs here.” That’s an instruction to the board fabricator to not put a panel tab where the micro USB connector goes. If it did, the board wouldn’t be buildable when panelized.

Some create a fabrication document layer and an assembly document layer. An example might pertain to reference designators. If the board is too compact for reference designators, of if, for aesthetic reasons, you want to leave them off the finished board, You can put the reference designators in an Assembly Documentation layer. Then be sure to let your assembler know what you’ve done.

The other things I did here is to keep all the LEDs aligned with the baseline of the PCB. In theory, you can place a component at any rotation angle you want. But, like any system, manufacturing works better when there are fewer variables.

You reduce the probability of error if you keep components aligned at factors of 90 degrees. It also helps to keep polarities oriented the same way, as much as possible. For example, if you can, have all the diode polarities facing the same direction.

Duane Benson
Time flies like an arrow; fruit flies like a banana

http://blog.screamingcircuits.com

Mistakes Were Made — Too Much Ground Isolation

I recently ran a batch of my Neo Pixel clock boards through the factory here. It’s an Arduino UNO-based design that I made for myself not long ago. It sports an Atmega328P, with bootloader, an FT231X USB chip, and a DS3231 real time clock (RTC) chip. Pretty standard stuff. It doesn’t even use small parts. All the passives are 0805 size. There’s nothing exotic here. So, where did I go wrong?

I also used my 3D printer to make a clock frame to hold this board and a 60-pixel ring of NeoPixels, from Adafruit. I found that with the micro USB connector on the top of the board, it’s a little awkward to plug in the USB cable, so I put pads for the connector on the back side of the board. Depending on exactly where and how the board will be used, the micro-USB, button switches, and clock backup battery can all go on either the front or back surface of the board.

Programming the bootloader worked as expected, so I assumed it was just a job well done. Except it wasn’t. When I plugged in the micro USB cable, the RX and TX LEDs flickered briefly, but the board wasn’t recognized by my PC.

Take a look at the back side of the PCB and see if you can find my mistake (spoilers after the photo).

I ran a 24 mil trace around the back side of the board to supply power to the NeoPixels. That’s not a problem, except that I closed the loop on that trace, and didn’t put a path for the ground to get across the trace.

Follow it around, and notice that the ground connections to the u-USB connector don’t go anywhere except to this part of the plane. Ugh.

Duane Benson
Cassini’s gone now.

Never Take Pin Numbering for Granted

Our all-things-about-electronics manufacturing standards body, the IPC, specifies the proper numbering order for most components. That’s a pretty nice thing that they do there, but it’s not always enough to prevent layout mishaps. Case in point a line of small PCB mount switches.

IPC calls out pin numbering for dual inline components, with pin one on the upper left (at zero degrees rotation), counting down, then over to the bottom right, and counting back up, as in the illustration below.

Given, that, it would be logical to assume that all dual inline components follow the same pattern. Logical, yes. Accurate, no. Multi-color LEDs, connectors and switches are some of the more common offenders.

In this particular switch, it’s not just a case of the numbering not following convention, it’s also different from one variant to another. I understand why. The switch isn’t changed between through-hole, top mount surface mount and side mount surface mount, but the leads have to be accessible from different parts of the package.

The following two footprints are from the same switch. One mounts on its side, and the other, standing up.

The pin one numbering doesn’t follow convention, nor does the numbering of pins 4 – 6. And, you may have also noticed that the two are top-to-bottom mirror images of each other. Ugh.

This is why my mantra is: Always check the datasheet. Always.

Duane Benson
Don’t take it for granite either, because granite is too heavy.

http://blog.screamingcircuits.com

Components So Fragile, They Break Before Arrival

There are a lot of components that require special handling. Some days, “special” requirements seem more the norm than the exception. But, every now and then, we see something that puts even those special components to shame.

Not long ago, we received a parts kit that contained a component so fragile, that most of them didn’t survive the trip with the shipper. It’s a 10 x 9mm (well, actually 9.68 +0.00/- 0.08mm x 8.64 +0.00/- 0.08mm, to be precise) sensor that’s only 0.05mm thick. That’s 1/4 as thick as the diameter of the solder balls connecting it to the PCB.

The part has solder balls on the silicon, with no other packaging. The dice has to be that thin, as the light-sensitive area is on the other side. That doesn’t make for a very robust component. It would require special handling all around. Unfortunately, no matter how careful we might be, if they’re broken when we receive them, there’s not much we can do (other than take pretty pictures).

In taking these closeups, I noticed that the registration in ball placement isn’t all that great. In the image below, take a look at the ball on the left, second from the bottom, and the ball on the far right.

The datasheets call out all non-specified tolerances as +/-0.001mm. With these being 0.2mm diameter solder balls, I’d have to say this is way outside of that tolerance. I’m sure the part would have adhered to a decent board just fine, but if the PCB were off a similar amount in the opposite direction, you may very well have a problem.

 

Duane Benson
You could make a very tiny sundial out of this.
But, could you use the shadow parallax to calculate the distance to the sun?

http://blog.screamingcircuits.com

What’s So Difficult about Diodes?

A diode can be put on a a PCB in one of two ways. It’s only got two pins (usually — see, I already have a caveat). I’ve written about them a few times before. I’ve got a sampling of those posts here. But first,

Good marking:

 

 

 

 

Bad marking:

 

 

 

 

The diode schematic symbol is always a good choice. If there isn’t room for that, “A” for anode or “K” for cathode work well too. Why “K”, and not “C”, you may ask? Because “K” kan’t be konfused with a capacitor.

Okay. Enough ranting for now. Just use the diode schematic symbol, “A”, for anode, or “K”, for cathode; and always look at the data sheet for the exact part number.

Duane Benson
1 cricket per chip

http://blog.screamingcircuits.com

What Makes a Good Fiducial?

Accountants may have a fiduciary responsibility, but that really has nothing to do with PCB assembly. Change the “ry” to a “ls,” however, and you get fiducials, which does have something to do with PCB assembly.

A fiducial is essentially an alignment mark for surface-mount assembly machines. High-volume assembly requires them to ensure accurate registration and parts placement. Low-volume assembly, like we do at Screaming Circuits, doesn’t necessarily require them. (Some low-volume shops do, so ask before assuming.) Even if they aren’t required, they still help and are always a pretty decent idea.

The basic idea, explained in this blog post here, is to create a non-reversal pattern with two or three fiducial marks on the board or panel. As you can see in the image above, the designer placed three fiducials around the board in a non-reversible pattern. (To protect the confidentiality of the board design, I obscured the circuit detail with this convenient robot head.)

In terms of the specific construction of a fiducial, two things are most important: contrast, and accuracy of position.

Contrast comes from it being bare copper – make it 1 to 2mm in diameter. Don’t cover it with solder mask. Make the mask opening 2 to 5mm larger than the copper.

The image on the left shows closeup detail. This particular fiducial mark uses a square cutout in the silk screen. Most use a round cutout, but the shape isn’t all that important. The copper pad should be round, though.

Making it out of copper gives the positioning accuracy. I’ve been asked why silk screen markings aren’t acceptable. Silk screen isn’t always registered consistently, and is therefore won’t ensure accurate alignment. Don’t use silk screen as a fudicial or positioning mark of any kind.

Again, they’re generally required for high-volume manufacturing. We (Screaming Circuits) don’t require them for low-volume, but some assembly houses do. Even when not required, they’re still a good idea.

Duane Benson
Fiducial on the roof is a long movie
But at least it stays in place

http://blog.screamingcircuits.com

Let’s Talk about HAL – For Big Parts Only

The board surface names: HAL and HASL (hot air leveling and hot air surface leveling) refer to the same thing. They are interchangeable terms. With that out of the way, I’ll get to my point, which is that HASL is not the right surface for all applications.

Take a look at the photo on the right. This is a 0.5 mm pitch BGA land, using lead-free HASL. Don’t expect good results with this board. It’s a good quality HASL board. Even the bumps on the pads are not out of line for a HASL PC board. It’s not a defect. It’s the HASL works.

The catch is that, while the PC board is perfectly good, it’s not the correct board surface to use for all parts. HASL is fine for larger parts, but for small components, it’s archaic and not reliable.

BGAs require a flat surface (also called a planar surface). With the bumps common on HASL boards, the BGA won’t have a flat surface. The solder paste won’t adhere evenly to the pads. The BGA will probably slide off the pads before reflow. It may end up far enough off that it can’t self-center, as BGAs usually do.

The HASL pads won’t all have an even amount of solder left on the board. Some pads will have more, some less. When added to the solder paste, the pads with more solder may end up bridging.

All of the issues become even more severe as the parts get smaller. Wafer scale parts, 0.4 mm pitch parts, 0201 passives, and other similarly or smaller sized components are essentially incompatible with the HASL surface.

So, what do you do? Order your boards with immersion silver or ENIG. Both give a nice flat surface that BGAs like.

Duane Benson
Open thse Posd Basy Doors Hasl

http://blog.screamingcircuits.com

Milling Madness

Sometimes, we find things that kind of defy explanation. Fortunately, this didn’t come from Sunstone, our normal board house.

Regardless of who it came from, I’m sure it was a one-off mistake, but, wow. How could anyone miss this?

 

 

 

 

 

 

 

 

 

It just goes to show, it’s always a good idea to take a look at what you get from your board house before sending it on to us.

Duane Benson
Termites, maybe?

http://blog.screamingcircuits.com

7 Cost Reduction Design Tips For Makers

As a maker, you really need a decent price, with good quality and good service. Contrary to what many people think, you don’t need to look outside of North America for this. You can keep your gaze west of the Atlantic and east of the Pacific.

Like everything else in the modern world, design decisions can have a pretty big impact on your cost. So, let’s take a look at seven design decisions that can make your manufacturing more affordable.

Accept longer lead times. Lead times are one of the biggest factors in electronics manufacturing. Businesses can turn a kitted assembly job overnight, but it costs a lot of money to do that. When you can, a 20-day turnaround that is much more affordable. Accepting longer lead times on PCB fab will drop your cost as well.

Avoid leadless packages Like QFNs and BGAs. Screaming Circuits builds tons of QFN and BGA boards, even down to 0.3 mm pitch micro-BGAs. That’s great if you need those packages. However, since all of the leads are underneath, we have to x-ray every part. That adds a bit of cost to the process. If you can, stick with TSSOPs and other parts with visible leads.

Use reels and continuous strips. To save costs, use full or partial reels or continuous strips of at least 12″ long.

Stick with surface mount. These days, through-hole components tend to be hand soldered. That costs more than machine assembly, so use surface mount wherever possible. Surface mount components tend to be less expensive than through-hole, too. If you do need a few through-hole parts, this is an opportunity to put in a little sweat equity by soldering the through-hole yourself and save a bit of money.

Keep surface mount parts on one side. Putting surface mount parts on both sides of the PCB is a great way to better utilize space. However, if cost is more of a concern, and you only have a few parts to put on the back side, it may be more cost effective to move them to the top side. If you’ve got a lot of parts, the additional cost for assembling both sides may be less than the cost for the extra board size, but with a small number of parts that’s probably not the case. Quote it both ways and see which is less expensive.

Panelize small boards. Sticking with a larger size makes the job easier, and, again, creates extra savings. If your board is smaller than 16 sq. in., panelize it.

Save on start-up costs. Just the act of starting out can pretty much break the bank. Software like PCB123 offers full-featured PCB CAD systems you can get free of cost.

By following these guidelines, you can get a decent price and quality service.

Duane Benson