Never Take Pin Numbering for Granted

Our all-things-about-electronics manufacturing standards body, the IPC, specifies the proper numbering order for most components. That’s a pretty nice thing that they do there, but it’s not always enough to prevent layout mishaps. Case in point a line of small PCB mount switches.

IPC calls out pin numbering for dual inline components, with pin one on the upper left (at zero degrees rotation), counting down, then over to the bottom right, and counting back up, as in the illustration below.

Given, that, it would be logical to assume that all dual inline components follow the same pattern. Logical, yes. Accurate, no. Multi-color LEDs, connectors and switches are some of the more common offenders.

In this particular switch, it’s not just a case of the numbering not following convention, it’s also different from one variant to another. I understand why. The switch isn’t changed between through-hole, top mount surface mount and side mount surface mount, but the leads have to be accessible from different parts of the package.

The following two footprints are from the same switch. One mounts on its side, and the other, standing up.

The pin one numbering doesn’t follow convention, nor does the numbering of pins 4 – 6. And, you may have also noticed that the two are top-to-bottom mirror images of each other. Ugh.

This is why my mantra is: Always check the datasheet. Always.

Duane Benson
Don’t take it for granite either, because granite is too heavy.

http://blog.screamingcircuits.com

Components So Fragile, They Break Before Arrival

There are a lot of components that require special handling. Some days, “special” requirements seem more the norm than the exception. But, every now and then, we see something that puts even those special components to shame.

Not long ago, we received a parts kit that contained a component so fragile, that most of them didn’t survive the trip with the shipper. It’s a 10 x 9mm (well, actually 9.68 +0.00/- 0.08mm x 8.64 +0.00/- 0.08mm, to be precise) sensor that’s only 0.05mm thick. That’s 1/4 as thick as the diameter of the solder balls connecting it to the PCB.

The part has solder balls on the silicon, with no other packaging. The dice has to be that thin, as the light-sensitive area is on the other side. That doesn’t make for a very robust component. It would require special handling all around. Unfortunately, no matter how careful we might be, if they’re broken when we receive them, there’s not much we can do (other than take pretty pictures).

In taking these closeups, I noticed that the registration in ball placement isn’t all that great. In the image below, take a look at the ball on the left, second from the bottom, and the ball on the far right.

The datasheets call out all non-specified tolerances as +/-0.001mm. With these being 0.2mm diameter solder balls, I’d have to say this is way outside of that tolerance. I’m sure the part would have adhered to a decent board just fine, but if the PCB were off a similar amount in the opposite direction, you may very well have a problem.

 

Duane Benson
You could make a very tiny sundial out of this.
But, could you use the shadow parallax to calculate the distance to the sun?

http://blog.screamingcircuits.com

What Makes a Good Fiducial?

Accountants may have a fiduciary responsibility, but that really has nothing to do with PCB assembly. Change the “ry” to a “ls,” however, and you get fiducials, which does have something to do with PCB assembly.

A fiducial is essentially an alignment mark for surface-mount assembly machines. High-volume assembly requires them to ensure accurate registration and parts placement. Low-volume assembly, like we do at Screaming Circuits, doesn’t necessarily require them. (Some low-volume shops do, so ask before assuming.) Even if they aren’t required, they still help and are always a pretty decent idea.

The basic idea, explained in this blog post here, is to create a non-reversal pattern with two or three fiducial marks on the board or panel. As you can see in the image above, the designer placed three fiducials around the board in a non-reversible pattern. (To protect the confidentiality of the board design, I obscured the circuit detail with this convenient robot head.)

In terms of the specific construction of a fiducial, two things are most important: contrast, and accuracy of position.

Contrast comes from it being bare copper – make it 1 to 2mm in diameter. Don’t cover it with solder mask. Make the mask opening 2 to 5mm larger than the copper.

The image on the left shows closeup detail. This particular fiducial mark uses a square cutout in the silk screen. Most use a round cutout, but the shape isn’t all that important. The copper pad should be round, though.

Making it out of copper gives the positioning accuracy. I’ve been asked why silk screen markings aren’t acceptable. Silk screen isn’t always registered consistently, and is therefore won’t ensure accurate alignment. Don’t use silk screen as a fudicial or positioning mark of any kind.

Again, they’re generally required for high-volume manufacturing. We (Screaming Circuits) don’t require them for low-volume, but some assembly houses do. Even when not required, they’re still a good idea.

Duane Benson
Fiducial on the roof is a long movie
But at least it stays in place

http://blog.screamingcircuits.com

Let’s Talk about HAL – And Another Thing

A few days ago, I wrote about HASL PC board surfaces, explaining that it’s not an appropriate choice for small parts.

Look at the same PCB image I used the other day. You might not recognize it because before it was on the right, and today it’s on the left. Getting past the fact that I just insulted everyone’s intelligence, there is something else about this board that we don’t recommend.

I’ll give you 30 seconds to figure it out. I don’t have a stopwatch, so the 30 seconds is on the honor system.

This is a land for a 0.5mm pitch BGA. As I wrote before, HASL is not the right choice for BGAs, especially for those of the smaller pitch variety. The other problem with this board is in the pad layout.

These are solder mask defined (SMD) pads – the solder mask covers the outer part of the pad, so the solderable copper surface is determined by the size of the opening in solder mask, not by the area of the copper pad.

For BGAs 0.5 mm pitch and larger, we (and pretty much everyone else) recommend non-solder mask defined (NSMD). With a NSMD pad, the solder mask opening is larger than the pad. This leaves more copper area to adhere to, including the sides of the copper pad. It tends to be much more reliable.

The image to the right illustrates the difference. 

The left-most pad in the image illustrates an SMD pad, while on the right is an NSMD pad. The NSMD pad leaves a lot more surface area of the copper pad for the solder ball to grip on, including the sides.

BGAs with 0.4mm pitches might need either SMD or NSMD pads, depending on a number of circumstances. Read this blog information for a bit more on 0.4mm. When in doubt, look in the back of the datasheet.

Duane Benson
Question for physicists and mathematicians:
Should the last recursion in the Mandelbrot set land on Plank’s constant?
Show your work.

http://blog.screamingcircuits.com

 

Let’s Talk about HAL – For Big Parts Only

The board surface names: HAL and HASL (hot air leveling and hot air surface leveling) refer to the same thing. They are interchangeable terms. With that out of the way, I’ll get to my point, which is that HASL is not the right surface for all applications.

Take a look at the photo on the right. This is a 0.5 mm pitch BGA land, using lead-free HASL. Don’t expect good results with this board. It’s a good quality HASL board. Even the bumps on the pads are not out of line for a HASL PC board. It’s not a defect. It’s the HASL works.

The catch is that, while the PC board is perfectly good, it’s not the correct board surface to use for all parts. HASL is fine for larger parts, but for small components, it’s archaic and not reliable.

BGAs require a flat surface (also called a planar surface). With the bumps common on HASL boards, the BGA won’t have a flat surface. The solder paste won’t adhere evenly to the pads. The BGA will probably slide off the pads before reflow. It may end up far enough off that it can’t self-center, as BGAs usually do.

The HASL pads won’t all have an even amount of solder left on the board. Some pads will have more, some less. When added to the solder paste, the pads with more solder may end up bridging.

All of the issues become even more severe as the parts get smaller. Wafer scale parts, 0.4 mm pitch parts, 0201 passives, and other similarly or smaller sized components are essentially incompatible with the HASL surface.

So, what do you do? Order your boards with immersion silver or ENIG. Both give a nice flat surface that BGAs like.

Duane Benson
Open thse Posd Basy Doors Hasl

http://blog.screamingcircuits.com

Milling Madness

Sometimes, we find things that kind of defy explanation. Fortunately, this didn’t come from Sunstone, our normal board house.

Regardless of who it came from, I’m sure it was a one-off mistake, but, wow. How could anyone miss this?

 

 

 

 

 

 

 

 

 

It just goes to show, it’s always a good idea to take a look at what you get from your board house before sending it on to us.

Duane Benson
Termites, maybe?

http://blog.screamingcircuits.com

Designing for Movement

What is the difference between electronics in a robot vs., say, a stationary temperature monitor and control device? For one, if the temperature controller goes haywire, you can pull it off the wall and stomp on it, while you might have to chase the robot (or be chased) to deactivate it if it’s gone into world domination mode. More relevant, though, is vibration.

Fixed embedded electronics generally don’t need to worry about vibration induced reliability issues. Mobile robots, however, do. Unsecured connectors can work their way loose. Bolts can back off. wires can brush against stuff. A lot of practices that don’t cause problems in a fixed installation can bite in a mobile setting.

For example, a simple board-to-board ribbon cable. On the left is a common friction-retention cable connector. Fine for a development board, but not for an environment subject to vibration. Instead, use a mechanically captive connector, as shown on the right.

 

 

 

 

Free hanging cables are also a “no” for mobile devices. Cables hanging loose can get caught on edges, or tall or hot components. That can lead to worn or melted insulation and shorts. Instead, use cable ties, insulating grommets, and careful routing.

There are plenty of other considerations, but these are two of the biggest traps to avoid when movement is called for.

Duane Benson
Klaatu barada nikto. Translation: “Spaceman says what”

Surface Mount Power Component Footprints

There was a time when the bison ran free on the plains and power components were easy to design with. Everything, with the exception of an exotic few, used either the TO-220 or TO-3 packages. Even when surface mount came along and cut the bison off from their grazing lands, most power components came in some derivative of the TO-220, with bent leads.

That’s no longer the case. Today, power components come in those TO-220 derivatives, SO-8 packages, QFNs, and down to 0.3 mm pitch wafer scale micro-BGAs. It’s madness.

The advantage of all of that chaos is that it gives more flexibility for sourcing and sizing of components. Which, of course, brings in a few more potential issues. Take the example below:

 

 

 

 

 

 

 

The footprints were originally created for a package with four 1.27 mm (0.05″) pitch leads on one side and a big heat slug on the other. The component selected is a variant in an SO-8 package. It’s not an uncommon occurrence.

As long as pins 5 – 8 all share the same internal connection, there isn’t anything electrically wrong here. However, with that large open copper pad on top, it’s going to be very difficult to get a good solder joint.

The fix is pretty easy. Just add solder mask to separate the pins. Make the mask openings the same size as you would if the pins were on individual pads. You don’t need to cover the whole pad with solder mask — just surround the pins so solder will stay where it’s needed. The mock-up below illustrates what it would look like:

 

 

 

 

 

 

 

Do the same with your solder paste layer. Unless the component has a heat slug underneath, make the paste layer block the big open area.

Duane Benson
Would a bisontennial be a 100 year old, large grazing animal?

Start the Year Right, Without PCB Placement Overlap

Today’s illustration isn’t a super-bad problem. You can usually make this work — unless  you’ve got to align with a hole in case. I’m talking about the venerable 3.5mm audio jack. They aren’t used all that often these days, but when they are, one of the most common formats has a design detail that makes edge alignment pretty critical.

The part of the connector that receives the jack is a short barrel, with an outside diameter larger than the height of the rest of the connector, as you can see in the image on the right. It comes in thru-hole and surface mount varieties.

This means that you have to have your solder pads or holes just the right distance from the board edge. Too close, and you can violate design rules. Too far inset, and you won’t be able to mount the connector flush.

 

 

 

 

 

This part can cause additional problems if the board is panelized. Like other overhanging connectors, the panel tabs, panel rails or other boards in the panel may make it impossible to mount the part, even if the spacing is correct.

The board shown below has both incorrect spacing, and another board in the panel blocking placement. The surface mount pads allow for more flexibility in positioning — it would have worked if not in a panel.

 

 

 

 

 

I’ve done this myself. Speaking from experience, I can say that it’s easy to avoid, and quite sad when discovered at assembly.

Duane Benson
Down at the edge, close by a panel rail
Close to the edge, round by the routing tab

Top 10 PCB Assembly Tips for 2016

I’ve already written my top 10 predictions for the coming decade, in this blog post. But, while predictions might be fun to muse upon, they really won’t help you get your job done. My top-ten8 pieces of PCB assembly advice for the coming year should make up for that.

000

Before you even start component selection, give thought to the design scale. What’s more important, board size, cost, or time to layout? A large board will be easier to route, but will cost more for the fab. A smaller board will cost less for the fab in terms of square inches, but may cost more due to extra layers, and may take longer to layout.

001

Factor in the cost of component size. For passives, roughly 0603 size parts will probably be the sweet spot in terms of lowest cost. The 0603 is also a good size for overall handling. We’ll assembly down to 0201 parts, but not all manufacturers will. 0603s are also easy to rework, and are manageable if you feel the need to hand solder a few.

010

Check out any exotic or very new parts. Some parts, these days, are only available in super small wafer scale BGA, or small QFN form factors. Take a look at your integrated circuits and make sure they come in packages that you’re comfortable working with.

011

Check for sole-source parts, or low-availability parts. The last thing you want is a completed design that’s sitting around waiting for one long-lead time, sole sourced part. If a sole-sourced part is at risk for availability, you might want to find something similar and more available.

100

Don’t forget manufacturing thermal concerns when laying out your board. Very large parts next to very small parts can cause problems. The large parts will act a bit like a heat sink and may prevent the solder for the small part from melting properly. The same thing can happen with internal copper planes that overlap on half of a small part, but not the other.

101

Give extra care to the clarity of reference designators and polarity markings. Make sure that it’s very clear which designator goes with which part, and that there isn’t any ambiguity in polarity markings. Take special care with LEDs, as manufacturers sometimes swap polarity markings between the anode and cathode – yes, the exact same mark can mean anode on one LED and cathode on another. Also, do your best to keep reference designators off of vias or any other spots that might break up the text.

110

When you’re ready to send your project our to be built, give your files a double check to makes sure you have the correct versions. bills of materials are especially susceptible to having bits of information out of date that might cause delays.

111

If you’re sending in a parts kit, double check that you have all of the parts, and that you have part number and reference designator on the individual part bags.

Manufacturing is just putting parts on boards, but it’s doing so with a whole lot of variables. A few extra checklist steps can go a long way toward removing variability of those variables.

Duane Benson
I am one with the net force. The net force is with me