And Then There Were 2

Isola and Rogers.

That’s what’s left of the US-owned laminate companies today after Taiwan’s Elite Material Co. announced plans to acquire Arlon EMD.

Yes, consolidation has been in the making for years. And with Isola owned by private equity group (Cerberus Capital Management), it’s anyone’s guess as to how stable that number is.

In reality, it was only a matter of time. The US share of global PCB revenues fell from north of 40% in 1984, to about 30% in 1998, to less than 8% in the recession of 2008. It now stands at roughly 4%. Naturally, the supply base is going to migrate to where the revenue is.

Time was, the US was home to several leading names in laminates: Polyclad (now owned by Isola), Westinghouse (acquired by Allied-Signal in 1992), GE (licensed to Cookson, now sold by Isola), Norplex Oak (sold by Allied Signal to Isola parent Ruetgers in 1999, then everntually shuttered), Taconic (bought by AGC), Nelco (ditto), among others. For its part, Arlon was acquired by Rogers in 2014, which then sold part of it to a private equity group the next year. That unit became Arlon EMD, which Elite is buying.

This is not to say there aren’t domestic sources of materials, of course. There are plenty: Ventec and Shengyi are among those that have expanded in the US in the past few years. A startup called Thintronics, with experienced laminate folks like Tarun Amla at the helm, has potential, but is likely years away from impact. There remain domestic flex circuit suppliers too, including DuPont and Sheldahl.

But the vast majority of multilayer and high-performance specialty material suppliers are held by offshore companies. As the US seeks to build back its manufacturing base, it needs to remember how critical the supplier infrastructure is to a successful industry.

Trouble in India

The riots at a Wistron plant in Narasapura could have lingering effects long after the damage is cleaned up.

India has been touted as the “next China,” a label local trade groups and business executives have relentlessly promoted. Besides being the only countries with a population exceeding 1 billion, however, the similarities are perhaps too many for today’s climate.

Even so, despite Prime Minister Modi’s best efforts to convert the nation into an autocracy driven by a Hindu ruling class, India is fighting a current that China avoided during its rise to manufacturing power, and that flow is getting stronger.

Yes, Nokia and Apple suppliers like Foxconn continue to make plans to expand in the country. But the broader supply base still isn’t there, and, perhaps burnt out from their China experience, expats aren’t relocating by the thousands to help the locals set up and manage companies. The semiconductor industry has changed over the past 20 years. New foundry costs are still rising, and the number of players has shrunk. Putting multi-billion dollar plants in India that replicate older technologies while still finding the resources to compete on the leading-edge might be a longshot, at best.

Nor has India provided the incentives China did to relocate. Instead, it has taken a tack similar to Brazil’s: Steep import taxes that while aimed at China, might actually discourage others from migrating there. Already, India and the US have taken economic swipes at each other, with the US dumping India from its preferred buyer program that allowed zero tariffs exports to the US, and India hiking tariffs on product coming from the US. The EU Parliament is taking an equally dim view of the former British colony’s trade and humanitarian approaches.

Indeed, Modi’s approach to alienating and, some argue, encouraging violence toward India’s religious and ethnic minorities puts Western OEMs in a difficult spot. Already under the gun for their massive investments in China, which have helped prop up that country’s autocratic leadership and create an international powerhouse that is now flexing its economic and military muscle all over Southeast Asia, business leaders might be loathe to plow more assets into yet another unpredictable regime. With governments, including the United States, slapping restrictions on Chinese companies for their alleged treatment of Muslim minorities, it won’t be easy to win any PR battles over why India is somehow an exception.

And the pollution coming out of India might be on a par with China’s — or even worse — hardly an attraction for today’s green marketing campaigns.

It remains to be seen, but I think episodes like Wistron’s will delay the push to the “next China.”

A Not-So Public Affair

Jiangsu Xiehe Electronic started trading today on the Shanghai Stock Exchange. The company makes flex circuits and performs SMT. That should be a big deal, since PCB manufacturers going public has become a rarity.

This is not your father’s printed circuit industry. IPOs are a novelty in our industry these days.

Moreover, almost all the IPOs of fabricators or EMS companies in the past 10 years have been in Asia.

This year, Covid be damned, Sihui Fushi Electronic Technology went public in July on the Shenzhen Exchange, and TLB is scheduled to be listed this month in Korea.

Insofar as I know, that’s it.

Last year was no better. Cal-Comp raised some capital by listing a subsidiary in the Philippines. Ventec went public in Taiwan.

Stretching back over the past decade, there are a few nuggets. But just a few.

Shennan Circuits (2017 IPO) and Zowee Technologies (2010) are public on the Shenzhen Exchange, and OK Industries (2017) is traded in Japan. And Dixon Technologies debuted in 2017 on the India Exchange.

Over in the UK, fabricator Trackwise Designs had an IPO in the UK a couple years ago. And NCAB went public in Sweden.

As private equity firms continue to consolidate fabricators and (mostly) EMS companies, as New Water Capital did with Veris and Saline Lectronics this week, the question becomes, what is their end-game? Will they amass enough revenue through M&A to make a public offering viable? Or will they try to button it up and sell to another PE firm — or perhaps an even larger manufacturer?

And is the era of the publicly traded circuit board manufacturer winding down?

Answers to the SMT IQ Test

Folks,

Here are the answers to the SMT IQ Test of a short while ago.

  1. What does the “A” in SAC305 stand for?
    ANSWER: 
    SAC stands for tin (Sn), silver (Ag), and copper (Cu). The “305” indicates 3.0 percent by weight silver, 0.5% copper, and the balance (96.5%) tin.
     
  2. The belt speed on a reflow oven is 2 cm/s. The PCB with spacing is 36 cm. What is the maximum time that the placement machines must finish placing the components on the PCB to keep up with the reflow oven?
    ANSWER: 
    Time (s) = product length (cm)/belt speed (cm/s) = 36 cm/2 cm/s = 18 sec.
     
  3. In mils, what is a typical stencil thickness?
    ANSWER
    : In range of 4 to 8 mils.
     
  4. BTCs are one of the most common components today; a subset of BTCs is the QFN package.
    1. What does BTC stand for? ANSWER: Bottom terminated component
    1. What does QFN stand for? ANSWER: Quad Flat Pack No Leads.
       
  5. What is the melting temperature of tin-lead eutectic solder?
    ANSWER:
     183° C.
     
  6. In mm, what is the finest lead spacing for a PQFP?
    ANSWER:
     Most common is 0.4 mm. A few have 0.3 mm, but these smaller spacings are hard to process.
     
  7. Are solder pastes thixotropic or dilatant?
    ANSWER:
     Thixotropic; the viscosity of solder paste drops when it is sheared (i.e forced through a stencil). Dilatant materials stiffen when sheared.
  8. In stencil printing, what is response to pause?
    ANSWER:
     When stencil printing is paused, the viscosity of the solder paste can increase; this situation would be considered a poor response to pause. Pastes that have stable viscosities during pausing are considered to have good response to pause.
     
  9. For a circular stencil aperture for BGAs or CSPs, what is the minimum area ratio that is acceptable?
    ANSWER:
     Typically greater than 0.66, although some solder pastes can print well a little lower than this.
     
  10. What are the approximate dimensions of a 0201 passive in mils?
    ANSWER: Approximately 20 by 10 mils.

HDPUG’s New Head

The High Density Packaging User Group has named Larry Marcanti executive director, ending Marshall Andrews’ 15-year run as head of the trade consortium.

Larry is an excellent choice. He has a degree in chemical engineering, and has more than four decades’ experience in the printed circuit board industry with Honeywell, Nortel and Avaya, including the eight spent in various levels of involvement at HDPUG. He knows the industry needs inside and out, and will get things done.

But let’s give Marshall his deserved due. He is perhaps the most experienced technical consortia executive this industry ever had. From MCC to ITRI to HDPUG, Marshall had a hand in all the major nonprofit research groups affecting printed circuit boards and packaging.

Many folks step in and out of the trade group participation. Marshall was a lifer. His legacy will last for years.

Test Your SMT IQ

Folks,

Mary had worked at a small SMT “mom and pop” shop for 12 years. Business was always good and she moved up to CFO of the 60 person company. Revenue had been over $12 million for a few years with profits north of $1 million each year. She marveled how well Fred, the owner,  managed the small firm. As CFO, she was well aware of the strong financial strength of the company.

Mary was stunned when 18 months ago, Fred said he wanted to retire in less than two years, and he wanted her to “buy him out.” Fred was fit and spunky, but 75 years old was now in the rear view mirror.

Mary was more than stunned by the price Fred wanted; it was way, way too low. She even “complained” about this. But, Fred considered her more as a daughter and insisted on the low price. However, one of the concerns they both had was that Fred was really also the chief engineer. They had many loyal workers, as Fred paid 50% over the local rate and provided great benefits, but no one could fill in for Fred in the technical aspects of running the shop.

Fred had been trying to coach Mary for the past 18 months so that she would understand the technical aspects of SMT assembly better. Mary was a fast learner, but with only 6 months left before Fred’s retirement, they both agreed they needed to hire a chief engineer.

So, Fred developed an SMT IQ Test for the candidates. If they could not get at least 80%, they would not be considered. Fred argued that if you were really good enough, you had to know 80% of these questions. Here they are:

  1. What does the “A” in SAC305 stand for?
  2. The belt speed on a reflow oven is 2 cm/s. The PCB with spacing is 36 cm. What is the maximum time that the placement machines must finish placing the components on the PCB to keep up with the reflow oven?
  3. In mils, what is a typical stencil thickness?
  4. BTCs are one of the most common components today. A subset of BTCs is the QFN package.
    • What does BTC stand for?
    • What does QFN stand for?
  5. What is the melting temperature of tin-lead eutectic solder?
  6. In mm, what is the finest lead spacing for a PQFP?
  7. Are solder pastes thixotropic or dilatant?
  8. In stencil printing, what is response to pause?
  9. For a circular stencil aperture for BGAs or CSPs, what is the minimum area ratio that is acceptable?
  10. What are the approximate dimensions of a 0201 passive in mils?

Try the test. Stay tuned for the answers.

Cheers,

Dr. Ron

Low-Temperature Reflow, High-Temperature Use

Folks,

Soldering enables modern electronics. Without solder, electronics would not exist. Copper melts at 1085°C, yet with solder, we can bond copper to copper at about 235°C or less with current lead-free solders. These lower temperatures are required, as electronic packages and PWBs are made of polymer materials that cannot survive temperatures much above 235°C.

Before the advent of RoHS, tin-lead solders melted at about 35°C less than lead-free solders. So today, soldering temperatures are at the highest in history. For some applications, it would be desirable to have solders that melted at closer to tin-lead temperatures. This desire has increased interest in low-melting point solders, such as tin-bismuth solders. Eutectic SnBi melts at 138°C, so reflow oven temperatures in the 170°C range can be used. These lower reflow temperatures are easier on some fragile components and PWBs and will reduce defects such as PWB popcorning and measling. However, the lower melting point of SnBi solders limits their application in many harsh environments, such as automobile and military applications. As a rule of thumb, a solder should not be used above 80 to 90% of its melting point on the Kelvin scale. For SnBi solder, this temperature range is 55.8 – 96.9°C. These temperatures are well below the use temperature of some harsh environments. In addition, SnBi solders can be brittle and thus perform poorly in drop shock testing.

So, the electronics world could use a solder that can reflow at a little over 200°C, but still have a high use temperature. This situation would appear to be an unsolvable conundrum. However, my colleagues at Indium, led by Dr. Ning-Cheng Lee, have solved it. They used an indium-containing solder powder, Powder A, that melts at <180°C and combined it with Powder B that melts at ~220°C. By reflowing at about 205°C, Powder A melts and Powder B is dissolved by the melted Powder A. To achieve this effect, the 205°C temperature must be held for approximately two minutes. The remelt temperature of the final solder joint is above 180°C. I discussed the phenomenon of a liquid metal dissolving another that melts at a higher temperature before. An extreme example of this effect is mercury dissolving gold at room temperature. So, don’t drop any gold or silver jewelry into a wave soldering pot and expect to fish it out an hour later!

Powder A would not be a candidate on its own as it displays some melting at 113°C and some at 140°C.

Using the criteria above, the use temperature of this new solder powder mix can be in the 89.4 – 134.7°C range, after reflow, as the remelt temperature is above 180°C. Tests performed by Dr. Lee and his team have shown the resulting solder joints also have good to excellent thermal cycling and drop shock performance.

Figures 1-3 show schematically how the melting of the two powders would melt at a peak reflow temperature of 205°C.

Figure 1.  Powder A and Powder B at room temperature.


Figure 2. At 205°C, Powder A has melted and it is starting to dissolve to Powder B.


Figure 3. After about a minute at 205°C, Powder B starts to dissolve. Given enough time, it will completely dissolve in Powder A, resulting in a new alloy that has a remelt temperature over 180°C, as well as good to excellent thermal cycle and drop shock performance. 

To me, this invention is one of the most significant in SMT in a generation. It could be argued that it is like finding the holy grail of soldering: melting at low-temperature with a service life at high-temperature.

Cheers,

Dr. Ron

PS. I developed an Excel spreadsheet to calculate the use temperatures. It converts degrees C into K. I used it to calculate the use temperatures above. If you would like a copy, send me a note at rlasky@indium.com.

When 2 is Better Than 5

Before we get too excited over TMSC’s 5nm chip foundry in Arizona — which, keep in mind, is only on the drawing board at this point — we are reminded the chip maker is working on a 2nm factory in Taiwan.

In fact, it could have 2 and 3nm processes online abroad before it even breaks ground in America.

The US needs to get in gear if it wants to be a leader in wafer production.

Reshoring, with a Catch

A trio of recent posts on manufacturing reshoring — or not — caught my eye.

It’s not happening. Writing in Forbes, Workbench chief executive Prince Ghosh points out that the US lacks the human capacity to fully actionize a return of mass production: “US manufacturing still suffers from problems of labor skills and wage costs. Tariffs have succeeded in lowering global dependency on Chinese manufacturing, but they have failed in driving manufacturing back to the US.” He has a point: It took China 20 years to build up the workforce needed to become the World’s Factory, and that’s even with a roughly 800 million or more citizen advantage over every nation but India.

And there’s no assumption investment in the US will go toward the truly leading edge technologies. To wit: If TMSC builds a 5nm semiconductor wafer fab plant in Arizona, as promised, it will still be behind the state-of-the-art 3nm node process expected to be available in 2022.

It’s happening. A more optimistic view comes from Nick Stonnington, a Forbes Councils Member,* says the US “has the potential to be one of the few countries in the world that is essentially self-contained from a manufacturing standpoint.” 

“Reshoring US manufacturing,” he adds, “would not only save enormous transportation costs; it would tie up less capital for less time. When you manufacture your product 5,000 miles away, you must spend extra time specializing your process to each market. In contrast, localized production facilitates just-in-time manufacturing, which optimizes workflow to more quickly produce a more specialized product for less capital investment. 

It’s happening, but not how you think. In Footprint 2020: Expansion and Optimization Approaches for US Manufacturers, consulting giant Deloitte says “the next shift in manufacturing locations is imminent,” but adds “some 98% of companies surveyed plan to either expand existing sites, or open new facilities, in countries with existing operations. This trend is true for virtually all types of facilities, from production to assembly to R&D. China and the US are anticipated to receive the highest number of existing country expansions.”

One topic, three views. Which do you agree with? And why?

*For the uninitiated, the Forbes Council is basically a network of bloggers who pay Forbes to publish their work. So take that for what it’s worth.

Heavenly Circuits

Jerry Falwell Jr. is in the news again, for salacious reasons that have nothing to do with electronics (I hope).

It seems like he’s having a bad week, and I’m certainly not going to pile on.

But mention of his name reminds me of the time I spoke with the son of the famous evangelist, and it was in my professional capacity as an editor, no less.

As I recall, I answered the phone one day — I can’t remember which year it was, but it would have been sometime around 2004 — to find a very professional voice on the line.

“Mr. Buetow?”

Yes.

“Would you have time to speak with Mr. Jerry Falwell Jr.?”

Umm, sure.

When JFJ came on, he was very polite and to the point. A gentleman in our industry — a printed circuit designer — had developed a concept for putting identical components on opposite sides of a board and running vias through to shorten the length of the connections. The designer, with whom I had spoken from time to time over the years, had offered the concept to Liberty University, where Falwell was vice chancellor. Mr. Falwell Jr. wanted my thoughts on whether Liberty should invest the monies to patent the idea.

I don’t recall what I told him, but a check of the USPTO shows that Liberty did follow through. A colleague reminded me representatives from Liberty actually attended PCB West one year as well to promote the mirror pinout concept. Still, I doubt they made much money off the idea, which has been overcome by other advances in component packaging anyway.

Whatever my advice to Mr. Falwell Jr. was, I hope it didn’t put him in a bad position with his trustees. I’m fairly confident it has nothing to do with the predicament he finds himself in now.

And if he calls me again, I’ll still be happy to talk. Provided we stick to electronics.