Solution to Moore’s Law


In a recent post, I discussed Moore’s Law. I challenged readers to solve for “a” and “b” from the equation a*2^(b*(year-1970)) from the graph in Figure 1.

Figure 1. Moore’s Law: Note that in 1982, ICs had about 100,000 transistors, whereas in 2016, they had about 10^10.

Moore’s Law posits that the number of transistors doubles every two years. If so, “b” should be 0.5. It ends up that “b”, from the solution in Figure 2, is 0.4885, so a double occurs about 1/0.4885 =2.047 years, but this number is really close to two years. The solution follows:

Figure 2. The Solution of a and b in the Moore’s law equation. 

BTW, congrats to Indium Corporation’s Dr. Huaguang Wang as he got a close solution.


Dr. Ron

All in on Altium?

Autodesk’s bid — declined, so far — for Altium took me by surprise. In retrospect, it probably shouldn’t have.

As I’ve noted many times, I fully expect Altium to be acquired. It’s just I was looking more in the direction of Dassault and PTC, the big mechanical CAD (MCAD) players. I should kept Autodesk in my field of view, especially after it acquired Eagle five years ago. I think I was lulled to sleep, as that was a small acquisition and Autodesk hasn’t made much of a push since to burrow into the ECAD space.

The proposal was hefty, valuing Altium at $3.91 billion. That’s not much lower than Siemens paid for the considerably larger and more profitable Mentor Graphics in 2107. Yet Altium thinks it can do better.

It just might. Autodesk’s bid prices each Altium share at AU$38.50, a 41.5% premium over Altium’s closing price on Jun. 4 and a premium of over 47.4% to the one-month volume-weighted average price. Prior to the offering, however, Altium’s stock had peaked at a 52-week high of AU$39.34 in last October. So at $38.50, Autodesk was actually underbidding a bit.

An Autodesk-Altium merger wouldn’t change the face of the ECAD industry immediately. Altium would still run neck-and-neck with Zuken for third place in revenues behind Cadence and Mentor. But it would give Altium the backing of a industry leader in 3-D CAD, and accelerate the inevitable MCAD-ECAD merger.

Checking Moore’s Law


Moore’s Law was developed by Gordon Moore in 1965. It predicted that the number of transistors in integrate circuits would double approximately every two years. Surprisingly, it has held true up to today. Figure 1 shows some of the integrated circuit transistor counts as a function of time. The red line is a good fit.

Figure 1. A plot of transistor count in selected ICs as a function of the year.

A reasonable equation for the red line is Transistor Count = a*2^(b*(year-1970)). What should “b” be if the count doubles every two years? To the first person that can solve for “a” and “b” using the red line and the equation above, we will send a Dartmouth sweatshirt.


Dr. Ron

Lighthouse Factories


I recently read an article about “Lighthouse Factories” which appear to be implementations of Industry 4.0. It is encouraging that engineers and scientists are working on these complex systems that are implementations of artificial intelligence (AI), the internet of things (IoT), and other examples of modern technology. According to the “Lighthouse Factories” article above, there are 54 such factories that now join the World Economic Forum’s Global Lighthouse Network.

But, I have to admit to being somewhat of a skeptic. Are all, or even most, of these factories up and running without a hitch? I have toured a 100 or so factories world-wide, and most are in Industry 2-3.0.

The multiple AI and IoT technologies that have to be connected and work flawlessly to get the Lighthouse factory to work is daunting. To me, it is like self-driving cars: they are 95% to full self-driving capability today, but the last 5% may not be obtained for decades…if ever.

recent article in the Washington Post presents a similar perspective. The author Dalvin Brown, argues that robotics and AI firms have struggled to make something like robot butlers. However, these efforts have only had success on very focused tasks. Nothing like a robot butler will exist for decades. Stephen Pinker’s argument that no AI can empty a dishwasher is still the most powerful way to clarify the primitive state of practical, common sense, robot-type machines.

Figure 1. Dalvin Brown points out in his article that nothing like The Jetsons’ Rosey the Robot exists today. Image source is here.

As I always state, we in electronics assembly should be cheering these folks on, as more electronics will be required than predicted with the slow emergence of complex interdependent technologies.

In addition, I think the hype around Industry 4.0 always neglects the important role that people have to play. When we watch something as complex as a landing of a spacecraft on Mars, we always see the Control Center with scores of people cheering the success. All of the important tasks were not handled by AIs.

So if anyone reading this article would like to invite me to a Lighthouse factory, please do. If I am wrong, I will write a retraction.


Dr. Ron

New Semi Group Needs to Talk Bigger Goals than Just Subsidies

“You never want a serious crisis to go to waste. And what I mean by that is an opportunity to do things that you think you could not do before.” ? Rahm Emanuel


In the wake of the latest components inventory crisis, the lobbyists are out in full-force trolling for subsidies for the semiconductor industry.

And if the usual suspects weren’t enough, many of the blue chip (no pun intended) companies that make up the Semiconductor Industry Association and SEMI this week launched yet another industry organization, the Semiconductors in America Coalition. the group supports the allocation of $50 billion by the US government (read: taxpayers) to fund advanced semiconductor manufacturing. The announcement came at almost the same time – coincidence? – IBM reported successful development of 2nm process using a 300mm wafer.

That prompted a longtime friend and industry observer to suggest, “rather than spending money directly, the US and state governments offer the same deal to the supply chain as a whole as do the South Korean, Chinese, and Taiwanese governments. A holistic response is needed. Maybe a carrot to keep 2nm tech onshore.

“We need to bring a number of critical technologies back; chips, packaging, HDI, transposers and even certain components,” he went on.

“Apple has been using black solder mask for decades now to prevent piracy and it has worked. Their keiritsu approach works. Keeping key technologies within the kimono, as the Japanese say, and bringing those key industrial components back, would help to reaffirm North American industrial security and protect our supply chain.”

I can see where he’s coming from, but Apple really doesn’t have the scale of the other communications and computing OEMs; it’s share of the worldwide smartphone market is about 15%, and it has only 8% of the PC market. It’s probably not the model to emulate in that regard. More interesting is its recent decision to go full bore with its own M1 processor, which is made by TMSC.

I know Samsung and TMSC are also working on (close to?) 2nm. I don’t think IBM alone has the scale anymore to be a difference-maker, which is where the other fabs need to step up. They all smell an opportunity, and it’s hard to blame them for trying to get their hands on “free” money.

What I haven’t seen is an overarching policy proposed by the various trade groups/lobbyists promoting onshore wafer production. It seems more piecemeal to me, with new associations stacked atop legacy ones, all promoting the same message (subsidies) but with no promise of tangible returns.

I’m not against government subsidies for critical tech – and semi is absolutely one of those – but it seems to me they should start with a goal and then fill in the rest (processes, funding, etc.).

Sans a clear objective, the game plan will not only be expensive and a hard sell, but doomed to break down.

US Semiconductor Independence Comes a Little Late for EI

Rebuilding the US packaging industry would not only insulate chip companies and their customers from political risk, it could also help them break free of the long cycles involved in creating new chips, said Tony Levi, a professor of electrical and computer engineering at the University of Southern California.”

Reading that, I can’t help but think of Endicott Interconnect Technology and what might have been.

It must have been 15 years ago when I toured EI, the one-time IBM campus where bare board fabrication, assembly and chip packaging all took place. So self-contained was the operation, in fact, they had their own laminate treater.

EI was where the HyperBGA and CoreEZ high-speed flip-chip BGA packages were invented, as well as custom laminates for semiconductor packages. The engineering talent was second to none. They really could do it all.

What they never mastered, however, was the right scale. Agreements to license their products went nowhere. The layout complicated process flow: I remember having to duck to avoid banging my head as I would my way through the partially subterranean assembly facility. Dwindling revenues coupled with the high cost of doing business in New York ultimately scuttled the company, and the assets were sold to TTM in 2019.

With today’s emphasis from President Biden on down on rebuilding the US semiconductor industry, however, one can’t help but wonder whether EI was the right idea, just 20 years ahead of its time.

Tin: The Foundation Metal of Soldering


The vast majority of solders used in electronic assembly have, as their base metal, tin. There are some specialty gold solders, like gold-copper or gold-indium, indium based solders, and a few others that do not contain tin. Although these solders have important applications, the sheer volume of tin-based solders is overwhelming in comparison.

Tin was a metal known to the ancients, and it led them out of the Copper Age into the Bronze Age. Ten to twelve percent tin in copper yields bronze, which is much stronger than copper (see Figure 1) and has the added benefit of melting at about 950°C vs. copper’s 1085°C.

Figure 1. The addition of alloying elements, such as tin and zinc solid solution, strengthen copper. Note that about 8% tin in copper increases the copper yield strength by two and one half times. The solid solution effect also lowers the melting temperature. Find the image source here.

This difference in temperature is significant in that with primitive heating technology, 1085°C is hard to achieve. In addition, since bronze freezes at a lower temperature, it fills molds much better. This property enabled the casting of much more complex shaped objects. See Figure 2. All of these benefits resulted in a dramatically increasing demand for tin. This demand established much more sophisticated trade routes for tin and its most common ore, cassiterite; this enhanced overall trade and accelerated the spread of civilization and learning.

Figure 2. The addition of tin to copper created bronze, which is much harder and also easier to cast than copper. This castability enabled complex designs like this dirk. Image: Wikipedia

Back to solder. Soldering is a technology that has existed almost as long as the copper age. It is thought to have originated in Mesopotamia as long ago as 4000BC. Soldering was used for joining and making jewelry, cooking tools, and stained glass. Today, in addition to these applications, plumbing, musical instrument repair, and plated metal are common uses. However, electronics assembly is the largest user of tin-based solder by far. See Figure 3.

Figure 3. More than 50% of tin is used in solder. Source: Wikipedia 

One of the greatest benefits of solder is its reworkability. This property enables rework of electronics assemblies, plumbing, jewelry, and musical instruments. Without the ability to rework electronics, the industry would struggle to be profitable. Another benefit, of course, is the miracle of soldering I discussed in another post.

So, the next time you stare at your smartphone, tablet, TV, etc., remember tin-based solder and soldering are fundamental to its existence.  


Dr. Ron

The Labor Honeypot

Plexus, annually among the highest-ranking performers in the CIRCUITS ASSEMBLY Top 50 EMS Companies list, yesterday announced a new plant to be built in Thailand.

In its press release, the company touted the facility as an example of “Plexus’ commitment to Environment, Social & Governance (ESG) best practices.” And on the surface, much of this sounds great: green building initiatives, an exterior green zone for employees, and other features.

But the Plexus Code of Conduct goes further than just green initiatives. There’s talk — lots of talk — about corporate and individual ethics, core values and leadership behaviors. And ESG criteria are more than green initiatives: the “social” component is tied to standards for managing relationships with employees, suppliers, customers, and the communities where a company operates.

From the Plexus website:

Plexus specifically cites its adherence to the Universal Declaration of Human Rights, a proclamation by the United Nations General Assembly in 1948, which in its preamble notes history’s uncomfortable past with free speech:

Whereas disregard and contempt for human rights have resulted in barbarous acts which have outraged the conscience of mankind, and the advent of a world in which human beings shall enjoy freedom of speech and belief and freedom from fear and want has been proclaimed as the highest aspiration of the common people

And commits its signers to the following:

Everyone has the right to freedom of thought, conscience and religion; this right includes freedom to change his religion or belief, and freedom, either alone or in community with others and in public or private, to manifest his religion or belief in teaching, practice, worship and observance.

– Universal Declaration of human rights, Article 18

And Thailand is complex. It routinely jails citizens, including minors, for speaking out. Defaming the monarchy is punishable by up to 15 years in prison per incident. God save the king, but don’t badmouth him.

This is going to sound like I’m picking on Plexus. In fact, this is a problem facing numerous multinationals. One thing they have in common is membership in an official sounding organization called the Responsible Business Alliance (RBA). Formerly the Electronics Industry Citizenship Coalition (EICC), RBA is a group of companies that “share a commitment to ensure working conditions in the electronics supply chain are safe, that workers are treated with respect and dignity, and that business operations are environmentally responsible.”

Fancy words aside, the RBA is a crock. The companies that make up its membership include Apple, Amazon, Foxconn, Pegatron, Wistron and other OEMs and ODMs that are routinely singled out by NGOs, in social media and the mainstream media for disregarding worker health and local labor laws. In my view, the RBA is used as a shield: listen to what we say, don’t look at what we do.

I can’t argue with Plexus’ decision to locate factories where the labor is skilled and generally cheap. But I can’t rationalize how Plexus’ lofty goals of good corporate citizenship fit with Thailand’s pattern of state-sponsored oppression.

Just as we thought the bloom was off the rose in China. Will the EMS industry trade one labor honeypot for another?