Passive Demand Anything But Passive

The component distributor TTI has released its first quarter market report and the outlook is ominous: 28 passive electronic component types have increasing lead times, while 24 saw price increases. Tantalum molded chip cap lead times are now up to 32 weeks.

Lead times for most connectors remain stable, although prices are climbing. The exception is TE, whose lead times are climbing.

Memory supplies are also generally getting tighter.

With some component manufacturers now requesting 18 month forecasts, the risk for double-bookings is on the rise. Beware! Someone always gets stuck holding the bag of chips.

https://www.futureelectronics.com/resources/market-conditions-report/memory

‘We are Stronger by What Unites Us’: An Open Letter from PCEA and SMTA

My name is Stephen V. Chavez CID+ and I serve as the President of the newly formed Printed Circuit Engineering Association (PCEA). PCEA is a trade association for professionals in the electronics industry. There are several other trade associations, some large or small, some old or new that currently exist. We seek to affiliate in a cooperative manner with each one. I have observed that we all attempt to serve the greater good in the electronics industry. Each group has evolved, grown and hopefully we all seek to coexist.

I know at the PCEA many individuals are involved and have historically been involved with IPC, SMT, IEEE, and many other associations. We have served and continue to serve in each other’s ranks. In particular I have the distinguished privilege to serve as an IPC-CID+ Master Instructor. I also serve as a volunteer on some of the IPC standard committees. I am honored for the privilege to serve in their ranks.

A recent column [Ed. note: Because the column was not in PCD&F/CIRCUITS ASSEMBLY, we are not linking to it here.] I read takes issue with the efforts of IPC in our industry, and while well-intended, I do not recognize the picture it paints. Among other things, the author suggests a lack of contact between IPC and the American educational system. In fact, IPC has a robust college outreach program across the US, and dedicated staff to support it. Keep in mind, the effects of the COVID-19 pandemic has slowed many good efforts to engage with engineers and future engineers worldwide, and this is no exception.

Moreover, in my opinion the best path to take is to volunteer our time – as we in the PCEA are doing – to educate our colleagues, the newer members of our industry, and the future
ones. Note the emphasis on the word “our.” IPC is a reflection of ourselves. Its staff, like
that of PCEA’s and many other associations and professional societies, comes from industry. We are all evolving and attempting to serve the industry at large in so many ways. It is a tribute to IPC that it has successfully navigated the changing industry so well over 60 years, and we all owe them a debt of gratitude and allegiance for so many of their great achievements. I once communicated a perspective about the IPC that bears repeating, “IPC is not a Them, rather, it is an Us!”

SMTA – Tanya Martin, Global Executive Director
SMTA has been fortunate to be serving the global electronics manufacturing and design
industry since 1984. We support professionals by facilitating access to national and international communities of experts, as well as accumulated research and training materials from those dedicated to advancing the industry. Some of our most important work is done within our local chapters (national and international) in connecting professionals for education, training, and fellowship. We have invested great resources into the college and university programs and support many SMTA student chapters around the US to be a bridge between industry and academia.

SMTA and PCEA both agree that IPC along with other trade organizations such as SMTA, IEEE, EIPC, others including the newly formed PCEA can coexist and collectively make this industry better. Each of us has the potential to serve the participants. Many of those participants are involved with several trade associations. We have seen IPC successfully reach into the community, academia, professional development, government advocacy, standards development, engineering, manufacturing, OEM business, contract manufacturing and the list can go on… The same thing can be said about the other trade associations. We believe we are all better served by our common welfare and the things that unite us are bigger than the things that divide us. We at the newly formed PCEA are ardent supporters of the IPC and their mission within the industry. We seek to affiliate and be proponents of their mission to serve the electronics industry. We encourage everyone to respect them not for their perfection but for the general overall benefit that our industry receives on so many fronts.

If faced with the question of whether to be givers or takers to the industry, we choose “givers.” Like all the trade associations, IPC is organic and adaptable, addressing the needs of those they serve the best they can. We are grateful and support their mission!

Stephen V. Chavez CID+
Chairman, PCEA
Collaborate, Inspire and Educate
Cell (602)369?3349
Stephen.Chavez.PCEA@gmail.com
www.pce?a.org

AI and Autonomous Vehicle Challenges: Common Sense, Flexibility, Dexterity, and Situational Awareness

I have been following advances in artificial intelligence (AI) and autonomous vehicles (AV) for some time now. At first, I was a cautious; then I became a skeptic; and now I am a doubter.

AI can do some amazing things. More than 20 years ago, Deep Blue beat World grandmaster Garry Kasparov. Today, AIs can routinely beat chess grandmasters and other world experts at games like Go.

Although impressive, these accomplishments play to AI’s strengths. Any activity that can be reduced to algorithms are natural for AIs. These AI victories have created a belief by many that AIs will soon take over most jobs and eventually become our masters. Witness such motion picture franchises as The Matrix and The Terminator. Some serious intellects buy into this concern as shown in the book Our Final Invention. This book posits that AIs pose a threat to human existence. The book extrapolates the successes of AIs discussed above and predicts that AIs will eventually be many times more intelligent than humans and will somehow develop something like consciousness. Ultimately, the AIs will seek to eliminate us.

I find these concerns almost comical. AIs connected to robots can do some very impressive things. In electronic assembly, they can hand solder very effectively. Perhaps better than humans, and they don’t get tired. But, they are not flexible. If the hand soldering operation changes to a different design, the AI must be reprogrammed. Whereas a human can quickly change from design to design. Lack of flexibility is a major AI drawback.

AIs also lack common sense. As Stephen Pinker has pointed out, no AI can empty a dishwasher. This is a profoundly common sense operation for humans. Yet this task is not only beyond AIs of today, but likely will be for a long time. Even something as simple as unloading boxes from a truck is a challenge to AIs as pointed out recently in Bloomberg BusinessWeek.[i]

This lack of flexibility and common sense makes it very hard for AIs to compete against humans when multiple tasks are required.

It is also difficult for AI robots to display dexterity. They may be able to pick up a chestnut, but crush a strawberry. This task is simple for an 18-month-old human.

The promise of autonomous vehicles is also greatly exaggerated. For a few years, some self-driving cars have been able to drive 95% of the route from my house in Woodstock, VT, to Boston’s Logan airport. However, they have made little progress in negotiating country roads, detours, and routes with complex signage. In addition, AVs lack situational awareness. As an example, AVs can’t look at a group of people near a street corner and sense if they are planning to cross or not.

Detours are hard for AVs. (Source: https://nj1015.com/is-the-detour-sign-a-thing-of-the-past-in-nj/)

So, I don’t see AIs taking all of our jobs or AVs putting truck drivers out of work any time soon. But the good news is that more electronics will be needed as these technologies make their slow advancements. So I see a busy future in the electronics assembly world.

Cheers,

Dr. Ron

The Pareto Chart: Crucial in a Continuous Improvement Plan

The Pareto Chart is a simple way to plot failure data that gives priority to the failure modes with the highest number of fails. This technique was developed by Vilfredo Pareto in the late 1800s to early 1900s. Pareto was studying social and economic data in Italy. He was one of the first to observe the 80/20 rule. In that, about 80% of property in Italy was owned by 20% of the people. Today many people use this rule. I have heard salespeople say that 80% of their business is from 20% of their customers as one of many applications of this rule.

In categorizing fails in electronics assembly, about 80% of fails are in 20% of the failure modes. Let’s look at an example (Figure 1). In this figure, we have plotted the number of fails versus the failure mode. Note that shorts is the most common failure at about 300, whereas opens is 75, missing components is about 50, and solder balls about 35.

 

Figure 1. A Pareto Chart of Electronic Assembly Failure Modes

These data should be used to develop a continuous improvement plan. Obviously, shorts should be focused upon first. Typically, one would use process data such as statistical process control (SPC) data to solve the shorts problem, most likely looking at a process metric like the volume of the stencil printed deposit.

I developed a graph similar to Figure 1 when I visited a client. The manager was convinced that solder balls were a big problem. When I asked the quality engineer for the supporting data, he said there was none. So, I asked if they collected failure data; he said they did. I then asked what they did with the data; he said they filed it away having never looked at it!

I asked to see the last several weeks of data and I plotted the data similar to that in Figure 1. It ended up that solder balls was the fourth biggest defect, not the first. As a result of using a Pareto Chart, the company focused on fixing their defect with the greatest number first, etc.

Pareto Charting is a simple yet crucial process in continuous improvement.

Cheers,

Dr. Ron


The Nature of Disruption

Just finished recording an hour-long (!) podcast with Judy Warner for Altium’s On-Track sessions. And while I don’t want to spoil any surprises, I will briefly touch on one of the topics we covered.

We got on the topic of disruptions. (I know, I know, it’s every keynote speaker’s favorite word. Sorry.)

In my view, ECAD software has to continue to get more intuitive and easier to use, especially for engineers who may only spend 10 or 20% of their time doing layout. If most of your time is spent using other tools, you won’t necessarily develop the hard-coded means to work the layout software. And no one wants to have to relearn the software each time they use it. So the tools must be more intuitive. And along the same lines, they need to be able to perform integrated functions with other platforms in their native environments. Users are most comfortable when operating in the environment they are familiar with.

To that end, I still think the company that breaks the ECAD industry will most likely come from outside the ECAD industry, if for the stunningly simplistic reason that engineers and their marketing colleagues in one industry are always looking for ways to expand into others.

Which is how it came to be that a maker of PCs (Apple) broke the recorded music industry and then broke phones. And a maker of batteries (Tesla) broke the automotive industry.

Going back aways, a software developer (Microsoft) broke computing, which was all mainframes and dummy terminals back in the day. (Now with app-based tablets and Chromebooks tethered to the cloud, we’ve come close to full circle.) And that same software developer broke video gaming, doing $5 billion in revenue from Xbox related sales last quarter alone and helping to spawn and massive market for online gaming.

My advice to Judy and her colleagues at Altium is to keep improving the design to manufacturing handoff — where so many manufacturability and quality defects take form — and to be wary of any company that comes up with a simpler and cheaper way to go from schematic to actual circuits, because while I don’t know who, how or when, I do know it’s inevitable.

Back in Person

The Covid-19 vaccine rollout has begun and we can’t wait to get back to seeing old and new friends in person.

To that end, I want to call your attention to the return of PCB East to the Boston area in June.

We will head to Marlboro, MA, for some 55 hours of training across three days (June 15-17) of printed circuit board engineering training. There, SI expert Lee Ritchey will have a couple of tutorials: Printed Circuit Board Stackup Design for High Performance Products, and also Power Delivery System Design.

We also will offer two full days of Rick Hartley, including a brand new talk titled, “PC Board Design for Optimum Fabrication and Assembly.” As Rick notes, Happy Holden has presented at PCB West a few times where he’s explained how fabricators determine pricing for bare boards and how EMS suppliers determine pricing for PCB assemblies. Happy shares what he calls a “Fab and Assembly Report Card,” which is how manufacturers assess and weight the variables that drive cost.

So, for instance, as most readers know, board size is a major cost driver. But, as Rick explains, what most designers don’t know is that aspect ratio of length to width also has a major impact. Two boards with the same number of layers and same number of sq. inches but with a difference in their respective aspect ratios – say one is much longer than wide – will push up the bare board cost. Same with assembly, which has even more cost drivers than does fab. Rick is going to do is discuss these major cost drivers.

Rick also told me that at PCB West he had discussions during the chat sessions with some of the bare board fabricators in attendance. One of them said (I’m paraphrasing here), “At any point in time as many as 90% of our jobs are on-hold, waiting for correction or clarity from the customer, so we can proceed.” In Rick’s opinion, designers are flying blind when it comes to many the cost drivers and what suppliers need at both the bare board and assembly level, hence the reason for so many delayed PCBs. These delays also add cost.

What Rick wants to do is to highlight and talk about the factors that Really drive up cost, like board size and aspect ratio, layer count, Z-axis uniformity, copper balance, etc.

And Susy Webb will have brand new, two-day tutorial for design engineers, “A Comprehensive Guide to PCB Design Necessities.” Her class will feature an overview of the entire process of board design, from start to finish, addressing the EE designing their own boards or the new designer who needs to thoroughly understand all the steps and processes. She’ll cover everything from the electronics and physics involved, how the rise time and controlling the energy fields impact the signals on the board, choosing parts types, schematics and signal and constraint issues, mechanical issues, and so on. Susy is also doing an all-day webinar.

We are looking forward to these any other presentations, and also to the exhibits on Jun. 16. Registration is now open, so visit pcbeast.com for details.

And Then There Were 2

Isola and Rogers.

That’s what’s left of the US-owned laminate companies today after Taiwan’s Elite Material Co. announced plans to acquire Arlon EMD.

Yes, consolidation has been in the making for years. And with Isola owned by private equity group (Cerberus Capital Management), it’s anyone’s guess as to how stable that number is.

In reality, it was only a matter of time. The US share of global PCB revenues fell from north of 40% in 1984, to about 30% in 1998, to less than 8% in the recession of 2008. It now stands at roughly 4%. Naturally, the supply base is going to migrate to where the revenue is.

Time was, the US was home to several leading names in laminates: Polyclad (now owned by Isola), Westinghouse (acquired by Allied-Signal in 1992), GE (licensed to Cookson, now sold by Isola), Norplex Oak (sold by Allied Signal to Isola parent Ruetgers in 1999, then everntually shuttered), Taconic (bought by AGC), Nelco (ditto), among others. For its part, Arlon was acquired by Rogers in 2014, which then sold part of it to a private equity group the next year. That unit became Arlon EMD, which Elite is buying.

This is not to say there aren’t domestic sources of materials, of course. There are plenty: Ventec and Shengyi are among those that have expanded in the US in the past few years. A startup called Thintronics, with experienced laminate folks like Tarun Amla at the helm, has potential, but is likely years away from impact. There remain domestic flex circuit suppliers too, including DuPont and Sheldahl.

But the vast majority of multilayer and high-performance specialty material suppliers are held by offshore companies. As the US seeks to build back its manufacturing base, it needs to remember how critical the supplier infrastructure is to a successful industry.

Trouble in India

The riots at a Wistron plant in Narasapura could have lingering effects long after the damage is cleaned up.

India has been touted as the “next China,” a label local trade groups and business executives have relentlessly promoted. Besides being the only countries with a population exceeding 1 billion, however, the similarities are perhaps too many for today’s climate.

Even so, despite Prime Minister Modi’s best efforts to convert the nation into an autocracy driven by a Hindu ruling class, India is fighting a current that China avoided during its rise to manufacturing power, and that flow is getting stronger.

Yes, Nokia and Apple suppliers like Foxconn continue to make plans to expand in the country. But the broader supply base still isn’t there, and, perhaps burnt out from their China experience, expats aren’t relocating by the thousands to help the locals set up and manage companies. The semiconductor industry has changed over the past 20 years. New foundry costs are still rising, and the number of players has shrunk. Putting multi-billion dollar plants in India that replicate older technologies while still finding the resources to compete on the leading-edge might be a longshot, at best.

Nor has India provided the incentives China did to relocate. Instead, it has taken a tack similar to Brazil’s: Steep import taxes that while aimed at China, might actually discourage others from migrating there. Already, India and the US have taken economic swipes at each other, with the US dumping India from its preferred buyer program that allowed zero tariffs exports to the US, and India hiking tariffs on product coming from the US. The EU Parliament is taking an equally dim view of the former British colony’s trade and humanitarian approaches.

Indeed, Modi’s approach to alienating and, some argue, encouraging violence toward India’s religious and ethnic minorities puts Western OEMs in a difficult spot. Already under the gun for their massive investments in China, which have helped prop up that country’s autocratic leadership and create an international powerhouse that is now flexing its economic and military muscle all over Southeast Asia, business leaders might be loathe to plow more assets into yet another unpredictable regime. With governments, including the United States, slapping restrictions on Chinese companies for their alleged treatment of Muslim minorities, it won’t be easy to win any PR battles over why India is somehow an exception.

And the pollution coming out of India might be on a par with China’s — or even worse — hardly an attraction for today’s green marketing campaigns.

It remains to be seen, but I think episodes like Wistron’s will delay the push to the “next China.”

A Not-So Public Affair

Jiangsu Xiehe Electronic started trading today on the Shanghai Stock Exchange. The company makes flex circuits and performs SMT. That should be a big deal, since PCB manufacturers going public has become a rarity.

This is not your father’s printed circuit industry. IPOs are a novelty in our industry these days.

Moreover, almost all the IPOs of fabricators or EMS companies in the past 10 years have been in Asia.

This year, Covid be damned, Sihui Fushi Electronic Technology went public in July on the Shenzhen Exchange, and TLB is scheduled to be listed this month in Korea.

Insofar as I know, that’s it.

Last year was no better. Cal-Comp raised some capital by listing a subsidiary in the Philippines. Ventec went public in Taiwan.

Stretching back over the past decade, there are a few nuggets. But just a few.

Shennan Circuits (2017 IPO) and Zowee Technologies (2010) are public on the Shenzhen Exchange, and OK Industries (2017) is traded in Japan. And Dixon Technologies debuted in 2017 on the India Exchange.

Over in the UK, fabricator Trackwise Designs had an IPO in the UK a couple years ago. And NCAB went public in Sweden.

As private equity firms continue to consolidate fabricators and (mostly) EMS companies, as New Water Capital did with Veris and Saline Lectronics this week, the question becomes, what is their end-game? Will they amass enough revenue through M&A to make a public offering viable? Or will they try to button it up and sell to another PE firm — or perhaps an even larger manufacturer?

And is the era of the publicly traded circuit board manufacturer winding down?

Answers to the SMT IQ Test

Folks,

Here are the answers to the SMT IQ Test of a short while ago.

  1. What does the “A” in SAC305 stand for?
    ANSWER: 
    SAC stands for tin (Sn), silver (Ag), and copper (Cu). The “305” indicates 3.0 percent by weight silver, 0.5% copper, and the balance (96.5%) tin.
     
  2. The belt speed on a reflow oven is 2 cm/s. The PCB with spacing is 36 cm. What is the maximum time that the placement machines must finish placing the components on the PCB to keep up with the reflow oven?
    ANSWER: 
    Time (s) = product length (cm)/belt speed (cm/s) = 36 cm/2 cm/s = 18 sec.
     
  3. In mils, what is a typical stencil thickness?
    ANSWER
    : In range of 4 to 8 mils.
     
  4. BTCs are one of the most common components today; a subset of BTCs is the QFN package.
    1. What does BTC stand for? ANSWER: Bottom terminated component
    1. What does QFN stand for? ANSWER: Quad Flat Pack No Leads.
       
  5. What is the melting temperature of tin-lead eutectic solder?
    ANSWER:
     183° C.
     
  6. In mm, what is the finest lead spacing for a PQFP?
    ANSWER:
     Most common is 0.4 mm. A few have 0.3 mm, but these smaller spacings are hard to process.
     
  7. Are solder pastes thixotropic or dilatant?
    ANSWER:
     Thixotropic; the viscosity of solder paste drops when it is sheared (i.e forced through a stencil). Dilatant materials stiffen when sheared.
  8. In stencil printing, what is response to pause?
    ANSWER:
     When stencil printing is paused, the viscosity of the solder paste can increase; this situation would be considered a poor response to pause. Pastes that have stable viscosities during pausing are considered to have good response to pause.
     
  9. For a circular stencil aperture for BGAs or CSPs, what is the minimum area ratio that is acceptable?
    ANSWER:
     Typically greater than 0.66, although some solder pastes can print well a little lower than this.
     
  10. What are the approximate dimensions of a 0201 passive in mils?
    ANSWER: Approximately 20 by 10 mils.