What is a Centroid File?

Call it what you may, but surface mount assembly robots need a magic file to determine where to place your components and how to orient them. We call it a centroid. What is a centroid file and why is it important to your PCB assembler?

Many assemblers use automated equipment to place surface mount components on PCBs. One of the tools we use to rapidly program these machines is the centroid file (aka insertion, pick-and-place or XY file).

Some CAD packages automatically generate this file, some will not. Sometimes you may simply need to modify the file, and some assemblers can make minor changes to the file or create it for you for a small fee.

Ultimately, the centroid file describes the position and orientation of all surface mount components on the PCB. A centroid file includes: the reference designator, X and Y position, rotation and the side of board (top or bottom). Only SMT parts should be listed in the centroid file the basic format for the centroid file is a comma delimited (.csv) file with data in the following order: RefDes, Layer, LocationX, LocationY, Rotation.

Here’s a breakdown of the data:

RefDes
The reference designator that matches your BOM and PCB markation.

Layer
Either the word “top” or “bottom.” This is not necessarily the CAD layer designator. Just “top” for a part located on the top of the board and “bottom” for parts on the bottom side of the board. Top is often referred to as the component side and bottom the solder side by assemblers and fabricators.

Location
The “LocationX” and “LocationY” values describe the part’s offset from the board origin. The location values require that the part origin be centered in the part. The board XY origin of 0,0 is in the lower left corner of the board. The 0,0 origin for the bottom of the board is in the lower left corner, looking at the top of the board, though the board. Preferred units are in inches (0.0000″).

Rotation
Rotation goes counterclockwise for all parts on top and clockwise for parts on the bottom. In both cases, this is from the perspective of looking at the top of the board. For bottom side parts, it is looking through the board, still from the perspective of looking at the top of the board.

LED & Diode Markation Guidelines for PCBs

Have you ever had an LED or other diode placed backwards? PCB assemblers work hard to place every component from the largest, highest pin-count logic chip down to the smallest passive components and micro wafer-scale BGAs correctly every single time. A key element of that accuracy is our understanding of your board and the component markings.

If you use surface mount diodes or LEDs, you probably understand the challenges involved in correctly and consistently indicating diode polarity. LEDs are usually cathode negative, while zeners and uni-directional TVS diodes can be cathode positive. Barrier diodes can be either orientation. It all depends on whether the diode is a rectifier, an LED, a uni-directional TVS, part of a daisy-chain and a host of other considerations.

When you start looking at the CAD libraries, you not only have all the differences from that manufacturer, you may also have different markation schemes from each CAD package developer and from each library builder.

Guidelines for diode polarity mark silk-screening — the diode symbol, “K” for cathode or “A” for anode. To ensure the best accuracy, we recommend extra care in marking diodes to remove any ambiguity.

The preferred method is to place the diode schematic symbol in the silkscreen. You may also place a “K” for cathode adjacent to the cathode. “K” is used because “C” could imply that the spot wants a capacitor. An “A” adjacent to the anode on the board works too, though it’s less common. If you are producing a board without silkscreen, put the mark in the copper layer or submit a clear assembly drawing with the other board files.

Relying on +, – or _ are not definitive in what they indicate and are not recommended. For example, a “+” or “-“ sign isn’t good enough, because it’s not always true that current flows through a diode from the anode to the cathode. For the common barrier diode or rectifier, it’s a pretty safe bet. However, with a zener diode or TVS, it’s not necessarily true. That is why marking a diode on your PCB with the plus sign (+) is not good practice.

Has the Economic Tide Turned?

2018 experienced a year of pump priming unlike any other during an economic growth period in our lifetimes. The US tax bill made significant revisions to the tax code, slashing taxes for (higher-income) individuals and corporations. The corporate rate alone was cut 14 percentage points, to 21%.

Moreover, taxes on profits held by US companies abroad were cut by 20 percentage points or more. That facilitated the repatriation of those cash reserves — estimated by Bank of America at $3.5 trillion, or more than 1/5th the size of the annual US GDP.

As those gains worked their way through the system, the effects included corporate buying sprees that topped anything we’d seen in at least a decade. Business capital investment budgets swelled, and suppliers’ bottom lines ballooned.

The bloom is off the rose, I’m afraid. While not a free fall, the economic reality today is that buyers are cooling off and budgets are returning to more conservative positions. Several EMS firms are guiding for slowing business conditions, and now fabricators are reporting the same. End-markets like automotive are leveling, which will have a ripple effect across the entire supply-chain.

No one likes a cynic, especially so close to the holiday season. But my advice is to go easy on the parties while aggressively going after market share. A large customer base is the best hedge against a slowing economy.

 

 

The Professor’s second visit to ACME … continued

.

“Well what should we do Professor?” John said weakly. 

“Clearly, not shut the line down over the lunch break,” The Professor responded quickly. 

“We can’t!” said John, “The operators are all friends and they count on having lunch together.” 

“How much are they paid per hour?” asked The Professor. 

“Ten dollars,” replied John. 

 “You can pay them $15 per hour and still make more profit if they keep the line running over the lunch break,” The Professor opined. 

“Fifteen dollars per hour for the lunch time or the entire 40 hour week?” John asked nervously. 

“For the whole week,” was The Professor’s reply. 

“I find that hard to believe,” John shot back.

“Consider this,” said The Professor. “Your line is up only 9.7% of an 8 hour shift, that’s only 47 minutes. Today you lost 95 minutes over the lunch hour. You may be able to increase your uptime to greater than 15% by keeping the line running over lunch. I modeled your business with ProfitPro3.0 cost estimating software. Your company will make millions more per year if you keep the lines running over lunch. I have worked with other companies to make this change; it is really easy with a 30 minute lunch period. If 5 people normally run the line, you have just one stay back during lunch. That way each person only misses the regular lunch break once a week.”

John thought optimistically, “There is such a thing as a free lunch.”

“Now, let’s talk about what we can do to double the uptime from the 15% we will get by running the lines over lunch,” said the Professor.

Patty listened to all of this in amazement. The Professor was helping ACME more than she thought possible.

Next steps? Yes, John will keep his job. But, what is The Professor’s plan to get uptime to 30% or more? And, we still haven’t learned where Patty will go to dinner.  Stay tuned for the latest.

Cheers,

Dr. Ron

Dr. Ron note:  As surprising as this may seem, this story is based on real events. The uptime numbers and improvements are from real examples. Any company that can achieve 35% or more uptime can compete with anyone in the world, even in low labor rate countries. Sadly, few companies know their uptime or have an urgency to improve it.

Best Wishes,