The Common Parts Library

The two most common causes of delay in small volume manufacturing here at Screaming Circuits (and presumably, others like us) are component availability, and footprint mismatches.

We don’t substitute parts without your approval for a number of reasons. I’ve written about those reasons a few times before. (Here, here, and here.)

Incorrect footprints can lead to a host of headaches as well. (Read more here, here, and here.)

Until recently, I haven’t seen a lot of progress toward solving these problems for the hordes of engineers that don’t have big support departments at their disposal. In fact, with the proliferation of newer, and small, component packages, and evolution of the supply chain, it’s really gotten worse.

However, there are a couple of Knights in Shining Armor riding in to try and solve both problems. The Common Parts Library (CPL), created by Octopart, aims to create a list of components with the highest probability of being available and staying available (there are no guarantees where component supply is concerned).

The other exciting entrant is SnapEDA. SnapEDA has a massive, and growing, library of component footprints. I’ve used their footprints with good success for high pin-count devices, and other parts with complex packages. It can save a lot of time and give better confidence that all of the pins go to the right functions.

Duane Benson
Map makers put fake roads in as copyright traps
These folks don’t do that. Nice.

http://blog.screamingcircuits.com/

Raspberry Pi — What’s It All Mean?

What would you do with a computer that costs $5?

First, let me explain a bit. The Raspberry Pi, if you don’t know, is a small, inexpensive single board computer designed by the non-profit Raspberry Pi foundation in England. Its mission is to make computer-related education less expensive and more accessible to the masses. As a next step in that mission, it just introduced the Raspberry Pi Zero, with an MSRP of $5. So, you can buy a Big Mac, or a Pi Zero. You could buy some peanut butter, jelly and a loaf of bread, eat that for the next five lunches, and buy five Pi Zeros.

Now some folks have complained that it’s not very useful on its own. It needs a wall bug power supply, a micro SD card, a few cables, and a USB hub to connect a keyboard and mouse to.

That’s true, if you want to use it as a full PC workstation, which you can. It runs the “Raspian” distribution of Linux. But, I don’t think that’s where the greatest potential for this thing lies. No, I wouldn’t use this as a workstation. It’s biggest potential, in my opinion, is as an inexpensive embedded controller.

It has I2C, SPI, and RS232 pins available, as well as plenty of GPIO. Attach a small daughter card with accelerometer, gyro, magnetometer, and GPS, and you’ve got a nice drone auto pilot. Attach a few sensors and a cell phone module, and you’ve got a remote data logger. What would you do with one of these?

Duane Benson
Little Jack Horner couldn’t get a plum out of this pi.

http://blog.screamingcircuits.com/

An Engineer Entrepreneur’s First Brand Lesson

If you’re an engineer starting a business, do you need to worry about your business’s brand?

In a word: yes.

You don’t need to make a big project out of it at the start. It can be as simple as a collection of notes. But simple or complex, you really need to start right away. Doing so will make things much easier down the road. The nice thing is that you can get started quite small. You don’t even have to call it a plan. At this point, it can just be a vision. (If the word “vision” seems too buzzwordy, then just call it “a bunch of ideas”)

What is a brand?

A brand has a lot in common with a person’s personality and reputation. It’s close enough that you can think in those terms. And, think, you should. Think about what you would like people (customers, employees, friends, family, etc.) to think and feel when they hear your company’s name.

What personality do you want your company to have?

  • Are you mean and gruff?
  • Are you nice?
  • Quiet?
  • Loud?
  • Helpful?
  • Athletic?
  • Sedentary?
  • Reliable to a fault?
  • Usually reliable?

Will you strive to be perfect, just okay, or a bit better than “good enough”? Do you want people to see you as having the best technology, or the best price? Go on with questions like that. Write down your questions, and write down your answers. You can carry a small note pad and pen around, but I suggest that you use a memo application on your phone. You’ll always have it with you, and it’s quick and easy to use.

When you walk into a grocery store, look at the signs. Do they strike you as inviting, or cold? When you get new tires for your car, watch how you’re treated. When you order parts online, consider how easy or difficult the web site is to use. Will any of that, or something similar, apply to your business? If so, jot down a quick note about it. Make a note any time you see or think of anything that triggers thoughts of what you want your business to be like.

You’ll collect all of these notes and clean them up a bit. These will become your brand attributes. They are the seed of a brand for your company.

Once you have this seed, you’ll use it to guide business decisions – all of them. For example; if financially frugal is one of your chose attributes, you won’t go out and rent a big office with mahogany paneling. If you want to be seen as leading edge in the media world, you might buy Mac laptops instead of clunky desktop Windows PCs.

Every thing you do and say, all of the time; it is all part of your brand.

A few example notes:

  • Am I cheap or expensive? Neither – I just want people to feel like they got a bit more than their money’s worth.
  • What about flashy? A little, but only where relevant. I don’t want fancy boxes, but I want them to look befitting of new technology.
  • I’m selling to engineers in banks, so casual suits if I’m in the front office, but no suits when I’m not.
  • Do I want people to envy my lifestyle? No, I want them to see me as a crazy workaholic.
  • What about getting in touch with me? I don’t think phone support is necessary for all of my customers, but I think email should be answered within an hour.
  • Am I “big industry”? No. I’m nimble and “new economy.” I should get a small office in a recently gentrified part of town, instead of in a mid-city office building.

Keep going. It can be as simple as that. You can get more formal and organized with it later.

http://blog.screamingcircuits.com/

How Should You Mark Your Diodes?

Current flows through a diode from the anode to the cathode – it will pass current only when the potential on the anode is greater than the potential on the cathode. This is mostly true, but not always.

For the common barrier diode, or rectifier, it’s a pretty safe bet. However, with a zener diode, or  TVS, it’s not true. And, that is why marking a diode, on your PC board, with the plus sign (+) is not good practice.

Take a look at the schematic clip below.

 

 

 

 

 

 

Once you put this circuit on to a PC board, you could legitimately place a plus sign on the anodes of D3 and D4, and another on their cathodes. In the next schematic clip, you could legitimately place both a plus sign, and a minus sign on the anode of D9.

We don’t know what you had in mind, and, we don’t have the schematic. If you use the practice of marking diodes with a (+) on the anode, we don’t have any more information than if you didn’t mark it at all. The same holds for using a minus (-) sign. It really doesn’t give us any information.

So how should you mark your diodes? The best method is to put the diode symbol next to the footprint. on the PC board, as shown below. You can also use “K” to indicate the Cathode, of “A”, to indicate the Anode. “K” is used because “C” could be mistaken for “capacitor.”

D5, in the illustration on the right, would be the preferred method. D7 will work as well. If you don’t have enough room on the board due to spacing constraints, you can put the same information in an assembly drawing.

Ambiguity is the enemy of manufacturers everywhere. Read a bit more on the subject here, or here.

Duane Benson
Help stamp out and eliminate redundancy, and maybe ambiguity, or maybe not

No Need to Waste Parts

We love parts on reels. Who doesn’t? But reels aren’t always practical — and it’s not just about cost. Cost is, of course, important, but there may be other factors to consider.

Say, for example, you need 20 2.2K Ohm, 5% 0805 resistors. You could buy a small strip of 25 from Digi-Key for $0.32. That gives the 20 you need, plus a few spares just in case.

Alternately, you could buy a digi-reel ( a custom quantity reel). On the reel, you’ll probably want more parts to keep the strip long enough for the feeder. Let’s go with 250 parts for $1.39. Digi-Key charges $7 extra to create a custom reel, so that’s a total of $8.39. Still peanuts.

For a third choice, you could just buy a full reel of 5,000 for $10.64. Still peanuts. If you’re gong to need the same part for a lot of designs, this might make sense. But, there’s more than just cost to consider. You need to store and ship it. Shipping two dozen reels gets pretty expense. Storing and inventorying several dozen reels can become a hassle too. 

The beauty of Digi-Key, Mouser and other places that sell cut strips is that they essentially become your parts warehouse. You pay the 32 cents and never have to worry about whether the part is in your inventory, how many are in your inventory, digging it out of wherever you stuffed the reel when you last needed it.

If you do buy and store the whole reel, you don’t need to ship the entire reel to us. Just cut a strip with the number you need, plus about 5% for that “just in case.”

Of course, if you need a few thousand of the parts go ahead and send us the reel. It would make sense then.

Duane Benson
Reel, reel your part
Solder it, solder it, solder it, solder it
Cost is but a factor

Packing Parts for Personal Manufacturing

Manufacturing, especially small volume one-time-only builds (like a prototype) is hard. It’s not wise for most people to actively seek out chaos, but that’s what we do, and we do it wisely. That’s what we’ve been doing since 2003.

We do it because it’s hard and because it’s necessary.

A big part of quality manufacturing involves risk reduction. Prototyping and quick-turns inherently add in a lot of risk. While we’ve designed our processes and systems around turning that risk into a quality product, there are a few things that you, the customer, can do to help reduce risk even further.

One of the best things you can do to reduce risk is to prepare a well organized kit, as shown in this video:

You can send us your parts in short, cut strips, like you get from Digikey or Mouser, long continuous strips, full or partial reels, tubes or trays. We machine place from all of those types of packages. What’s important is clear labeling and organization.

Individual, or mixed/loose components are not good, though. Pins get bent, leads get contaminated, values get mixed… Leave them in the strip, even if it’s short. If you’ve got multiple short strips of the same part, we can still machine place. Don’t tape them together. We can deal with them as is.

Duane Benson
Peter Piper Picked a Peck of Pickeled Manufacturing

http://blog.screamingcircuits.com

Proper PCB Storage — The Top 3 Hazards

It’s late. Do you know where your printed circuit boards are? Let me rephrase that: Can unused PCBs be stored for future use?

Yes, they can – if stored properly. Keep them wrapped up, or sealed in a bag. Anti-static isn’t necessary in this case, but it won’t hurt. Keep them in a cool, dark place. Keep them clean. Do your best to avoid dropping them on the floor and stepping on them.

The board in this photo was left out on a desk for a while, and then shoved into a desk drawer. The environment took its toll on the immersion sliver finish, making it very much unusable.

What can go wrong:

1. Fingerprints. The oils on your finger can etch fingerprints into ENIG or immersion silver board surfaces. If you plan on committing a crime go ahead and do this so we can catch you. If you aren’t going to start a life of crime be careful to not get your fingerprints on the board surface. Handle on the edges, or at least, don’t touch any exposed metal.

2. Moisture. Moisture is good for your skin but not for your PCBs. Over time, PCBs can absorb moisture, especially in a humid location, or the ocean. If thrown into a reflow oven they then might laminate. Store boards in a dry environment. If stored for a long time, you may want to pre-bake them prior to use.

3. Atmosphere. Sometimes dirty air can contribute to tarnish or corrosion on the exposed land pads. Dust can settle onto the boards as well. Tarnish and dust can usually be cleaned off, but corrosion can’t. Wrap up your boards for long-term storage.

Treat your boards well and you can likely use them at a later date. Don’t treat them well and you may need to replace them, wasting a bunch of money. Often, the damage isn’t as clear as in the above photo, but could still lead to poor solderability.

Duane Benson
Don’t surf on your silver

http://blog.screamingcircuits.com/

What is Personal Manufacturing?

There’s a lot of buzz floating around these days, about “Personal Manufacturing.” Screaming Circuits has more than a decade of bringing personal manufacturing to engineers. We pretty much started the category in the electronics industry, so we’re quite familiar – but not everyone knows what personal manufacturing is. I’ll do my best to describe it, and what it can do for you.

The short answer, is that personal manufacturing is building your boards on your terms, not on the terms of some nameless, faceless factory.

The longer answer is probably more useful.

Traditional manufacturing is all about statistics and fractions of a penny. Those factors are important; especially if you’re manufacturing millions. But, when you just need a few boards, or a few hundred boards, those factors can make your job nearly impossible.

With personal manufacturing you can decide when you want or need assembled boards on your workbench. You won’t need to beg for time on a busy volume manufacturing line. In the case of Screaming Circuits, it’s cloud-based manufacturing so you can order online from your desktop, when you’re ready, rather than waiting for someone to pick up a telephone.

With personal manufacturing; you design it, get some prototypes, make a few mods, lather, rinse, repeat. Then, you’ll get a few dozen, few hundred, or few thousand, and start selling. You’ll get what your budget allows and don’t need to commit to minimum volumes, or long-term business. You can polish your design faster, with less hassle, and you can get to market faster, with less hassle. Faster to market and less hassle both mean more time and money for you.

NPI (new product introduction) has never been easier than it is with personal manufacturing. Years ago, I was a product manager at a start-up. The entire NPI process was a nightmare. Our engineers couldn’t get anything built without half a dozen support staff. Someone had to make the documentation usable. Someone had to hunt down sample quantities of parts. Someone had to make sure the board would fit on the volume manufacturers’ assembly line. It went on and on like that, taking up months of the design cycle. We were at the mercy or people who only cared about making their part of the process easier.

Rather than producing the quality product we wanted, our new products would be shipped to customers with mod wires. I recall one board that needed 64 mod operations before it could be shipped. Yes, that was on a released, shipping product.

With personal manufacturing, as Screaming Circuits provides, you can get a few prototypes built right away. If need be, you can modify, and get a few more built at your convenience. When the mode wires are gone, you can build up a hundred and get them out to customers without delay. It’s not about what works best for Screaming Circuits; it’s about what works best for you.

Duane Benson
Right now a personal pan pizza delivered to my desktop would work for me.

http://blog.screamingcircuits.com

Mark Those Diodes!

MarcoPOLOLogo5Every now and then, I write about ambiguity with diode marking; like here, here, or here. It’s a pretty important subject to get right, but what does it have to do with Marco Polo, you ask? Well, that depends on whether you’re asking about the person or the game.

In the game, people try to find someone, without sufficient information. One person, designated “Marco” closes their eyes and periodically yells out “Marco.” The other people respond with “Polo”, and the Marco tries to find one of those other people with just the audible cue. For some critters, that’s an easy task, but for the average human it’s not always so easy — especially when the diode doesn’t audibly respond to “Marco.”

If you’re talking about the explorer, Marco Polo; well, he set off on an adventure, got lost, and either saw a bunch of cool stuff, or made up a bunch of cool stuff (depending on whom you ask).

Again, you ask … “What does this have to do with hamburgers in a handbag, or with diodes?”

It has to do with the fact that he didn’t know where he was going, and, that without clear marking, it’s not always possible to know which way to point the diode.

BlackPOLOSo, we’re celebrating Marco Polo month with our Screaming Circuits Marco Diodo Polo shirt.

If you place an order with Screaming Circuits during May, 2015, we’ll send you an email with instructions telling you how to get a free Marco Diodo Polo shirt after your next order (provided the order is placed between May 1, 2015 and on or before June 5, 2015). If you place an order between now and then, and promptly respond to the email, you can get one for free (a shirt. Not an order).

Duane Benson
Fifty-four fourty, or fight!

blog.screamingcircuits.com

Indicating Polarity on Diodes

Everyone knows which way current flows through a diode. Right? Of course they do. Diodes only permit current to flow in one direction.

Well, sort of.

In the case of your garden variety rectifier, barrier diode, or LED, that’s true. That line of thinking leads a lot of people to assume that you can indicate diode polarity by putting a plus sign “+” next to the anode.

Here’s why you can’t.

Zener and TVS diodes have a breakdown voltage. They are put in the circuit with their cathode on the positive side. In that configuration, they don’t conduct unless the voltage rises above their breakdown point. Zeners and TVSs are used for regulation, transient suppression, and things of that sort.

But wait! There’s more!

Regular diodes can be pointed backwards too. Anytime an inductive load is switched, like a solenoid or motor, you need a flyback diode to protect the switching logic. A MOSFET switching a solenoid on and off is a good case to look at.

When the MOSFET turns off, the current in the solenoid coil starts to drop. As it starts to drop, the magnetic field generated by the current flow starts to collapse. The collapsing magnetic field generates an opposite current, referred to as flyback, or back EMF.

To save your silicon switching device, you put a flyback diode across the coil, or motor, terminals, pointing backwards from normal current flow – with the cathode pointed toward +V. Doind so shorts the flyback current back into the coil, preventing damage to the MOSFET. These are typically Schottky diodes, but can be ordinary rectifier diodes.

A “+” plus sign alone, doesn’t tell anyone anything. For more information on what to do, read this post. Just for fun, read this post too.

Duane Benson
Diodes. Not just for breakfast anymore