Thermal Mass

I mentioned thermal mass in a recent post and was thinking over my oatmeal that its a subject deserving of more attention. That’s more attention to thermal mass, not to oatmeal. Although oatmeal is a pretty healthy food, so it probably deserves more attention then it gets these days.

When most people think of thermal issues, the considerations tend to be around operating conditions. Will the part generate too much heat? Will there be enough airflow or is there enough surrounding material for adequate conduction cooling? All of those are pretty important — especially with the obvious like fast processors and big honking power components. But there are a lot of thermal issues related to manufacturing that have to be considered as well.

Reflow soldering is supposed to gradually and evenly warm the PCB and parts. Then, the temperature will spike up just high enough and long enough to melt all of the solder before dropping again. This is were thermal mass trickery comes in to play.

If you have a tiny passive part and one pad has a lot more copper than the other — it can even be a problem, even if it’s an innerlayer with more copper under one pad then the other. That extra thermal mass can delay the solder melt on that side of the part slightly. That delay in melting can cause the surface tension on the side that did melt to pop the part up like a tombstone. Placing a very large component too close to one side of a very small part can also cause the same problem.

If you have really tiny parts, give your layout (inner and outer layers both) and placement a scan to make sure you haven’t inadvertently created a heat sink on one pad and not the other.

Duane Benson
Quick. Call Wilford Brimley