Thoughts for the New Year


I thought I would post a few short thoughts as the new year begins. Here it goes:

1. A billion hours ago the Stone Age was the future, a billion minutes ago Caesar ruled Rome, a billion seconds ago Jimmy Carter was the US president, a billion passives ago you took your last break (about 4 hours ago). As exciting as the latest quad core microprocessor is, the largest number of components that we assemble is passives, approaching two trillion per year. That is about six billion a day. If you lined up all the seven billion people in the world, each year you could give every man, woman and child several hundred passives from all of the passives that are produced. If two trillion passives (assume 0402s) were lined up end to end they would circle the earth 50 times!

2.    Schools in Indiana are no longer required to teach cursive writing. Keyboard skills are considered more important. Yikes! I’m all for keyboard skills, but I want my grandkids to be able to write in cursive. If not, how do they write their names? Are we less than a generation away from people writing their names as an “X?”

3. Thoughts on lead-free solder reliability in long-term mission critical environments from a NASA study:

“Test vehicles assembled with lead-free materials (notably tin-silver-copper) exhibited lower reliability under some test conditions.”

Some people would respond to this statement by saying, “I told you that lead-free solder was no good.” However, another way of stating the results would be, “Lead-free solder performed better in more tests than tin-lead solder did.” The ratio, by my count, was about 5 to 3 in favor of lead-free. However, I agree that lead-free is not ready for mission critical (>20-year) service life. The main reason being that, in some cases, when lead-free solder joints failed in these types of studies, the results were much, much worse than for tin-lead solder joints. These failure modes need to be understood and addressed. In addition, tin whiskers and pad cratering are looming problems in these, mission critical, long service life quadrant D applications as discussed in the US Navy’s Manhattan Project.

4. I had not planned on reading Steve Job’s biography , as I thought I knew quite a bit about him from reading recent articles in Forbes, Fortune and Business Week. But I went ahead and downloaded it to my Kindle anyway. This work by Walter Isaacson is a masterpiece. To share one tidbit from it that relates to those of us in electronic assembly:

In almost all cases electrical engineers first design the circuits that perform the functions of some device like a mobile phone or tablet. Mechanical Engineers are then left to fit the circuits into the “box.” (Hence MEs are often called “box stuffers” by EEs). Jobs completely changed this approach. He told the engineering team how he wanted the product to look and function first, then they had to determine how to make it work that way. I’m convinced that only through this approach are the revolutionary design concepts that Jobs and Apple came up with possible.

The book also points out his many flaws (e.g., Jobs would regularly park in handicap spots; the author reports several times that Jobs just didn’t think the rules applied to him, etc.). Another interesting thought (read it and see if you agree with me) that if Steve was not Paul Jobs’ adopted son, Apple would have never happened.

Dr. Ron