How Far Can We Go to Replace Lead?

The end is nigh for lead in solder, as our columnist Tim O’Neill writes this month in CIRCUITS ASSEMBLY.

Rules governing use of the materials — Directive 2015/863, aka RoHS 3 — are coming online and will be in full force by 2019.

Suppliers have until July 22, 2019 to meet the stricter provisions, which includes no more than 0.1% lead in medical devices, which are joining consumer, industrial and other electronics products on the effectively banned list.

The question Tim poses is, What comes next? Already, the future of commonplace unleaded alloys such as SAC is being questioned. As Tim writes, “It is even feasible SAC 305 will be dislodged by a new de facto alloy that better serves the needs of the market.”

A Norwegian scientist believes he may have the answer. As noted in Phys.org this week, Dr. Henrik Soensteby of the University of Oslo is working on an alternative alloy that contains nothing but common — and essentially benign — elements. In conjuring up his alloy, Soensteby is mixing sodium, potassium and oxygen with niobium, a very strong metal typically used in steel. While niobium dust is reported to cause eye and skin irritation, it reportedly is nontoxic, at least in the volumes used.

It’s not so clear yet how much niobium would be needed. Brazil is the biggest supplier of niobium, producing more than 85% of it each year. Other sources include Zaire, Russia, Nigeria and Canada. World production is relatively light: around 25,000 tonnes per year. Some scientists believe there are ample supplies still in the ground. There’d better be: Some 5 million tonnes a year of lead ores are mined each year, although obviously not all that goes into electronics.

Soensteby is optimistic he can use atomic layer deposition (ALD), a vapor phase method that uses gas at controlled temperatures to stimulate a reaction with the substrate; the output is thin films. It is an emerging technology in semiconductor manufacturing. There are many, many questions, of course. First and foremost, does the alloy actually, you know, work? Also, ALD typically involves higher temperatures than are used in electronics assembly: Would it work with today’s packaging? Will other technologies such as 3D printing or Joe Fjelstad’s solderless Occam process supplant the need for solder in any form?

Still, materials science is the most exciting area of electronics today. We may make fun of folks who walk around with smartphones seemingly permanently tethered to their ears, but we also have them to thank.

 

Register now for PCB West the Silicon Valley’s largest PCB industry trade show: pcbwest.com! Now with full-day electronics assembly tutorials!

 

This entry was posted in Hot Wires and tagged , , , , , , by Mike. Bookmark the permalink.

About Mike

Mike Buetow is editor-in-chief of Circuits Assembly magazine, the leading publication for electronics manufacturing, and PCD&F, the leading publication for printed circuit design and fabrication. He is also vice president and editorial director of UP Media Group, for which he oversees all editorial and production aspects. He has more than 20 years' experience in the electronics industry, including six years at IPC, an electronics trade association, at which he was a technical projects manager and communications director. He has also held editorial positions at SMT Magazine, community newspapers and in book publishing. He is a graduate of the University of Illinois. Follow Mike on Twitter: @mikebuetow