# Minimizing Graping

Folks,

This post is an excerpt on graping from Indium Corporation’s The Printed Circuits Assemblers Guide to Solder Defects.

Introduction

The growth of personal electronic devices continues to drive the need for ever-smaller active and passive electrical components. This miniaturization trend, together with the demands for RoHS-compliant Pb-free assembly, has created more challenges, including the graping effect.

As a solder paste deposit decreases in size, the relative surface area of exposed solder particles increases, and the amount of available flux to remove surface oxides decreases. Compounding this is the additional heat necessary to reflow most Pb-free solders, resulting in a formula conducive to producing the graping phenomenon. During the heating process, as the flux viscosity decreases and begins to spread downward and outward, the solder particles are exposed at the top of the solder paste deposit. If there is no flux in proximity, these solder particles may become oxidized when the solder paste enters the ramp or soak stage of reflow. These oxides will inhibit the full coalescence of the particles into a uniform solder joint when the solder is liquidus. The unreflowed particles often exhibit the appearance of a cluster of grapes, as can be seen in Figure 1.

Figure 1. The graping effect.

Stencil Printing

The area ratio (AR) is a critical metric in successful stencil printing. It is defined as the area of the stencil aperture opening divided by the area of the aperture sidewalls. Figure 2 shows a schematic for square/rectangular and circular apertures. A simple calculation shows that the AR is simplified to the diameter (D) of the circle divided by four times the stencil thickness (t) or AR=D/4t. Somewhat surprisingly, the result is the same for square apertures, with D now equal to the sides of the square. For the AR of a rectangular aperture, the formula is a little more complicated: ab/2(a+b)t, where a and b are the sides of the rectangle.

Figure 2. Aperture schematics for rectangular and circular apertures.

It is widely accepted in the industry that in order to get good stencil printing, the AR must be greater than 0.66. Experience has shown that if the AR <0.66, the transfer efficiency could be low and erratic, although this has gotten better with advances in solder paste technology.

Transfer Efficiency

Transfer efficiency, another important stencil printing metric, is defined as the volume of the solder paste deposit divided by the volume of the aperture. To accommodate fine-feature stencil printing, it is not uncommon to look at solder paste that incorporates finer powder in order to optimize the printing process. However, as the size of the powder particles within the solder paste decreases, the relative amount of surface area exposed increases. With this increase in surface area, an increase in total surface oxides is also introduced. This increase in surface oxides requires the flux chemicals to work even harder at removing the oxides and protecting the surfaces of the powder, component, and board metallizations during the entire reflow process.

On a 3mil-thick stencil, the AR for a 6mil square aperture is the same as the AR for a 6mil circular aperture: 0.50. However, when comparing the two, the volume of the square solder paste deposit is greater (~108 cubic mil) than the circular deposit (85 cubic mil). The additional solder paste volume provided by the square aperture may help reduce graping. Of greater importance, though, is the increased transfer efficiency provided by the square aperture. The square aperture design provides more consistent transfer efficiency, further reducing the potential for graping as inconsistent deposits could mean less volume.

Results from solder masking experiments have shown that the graping effect is less prevalent for the solder mask defined (SMD) pads. It is believed that the solder mask provides a barrier (dam), restricting the spread of the flux during the heating process, and increases the potential availability of the flux to remove oxides and protect from further oxidation. The solder mask can also act as a barrier to protect the solder paste powder particles in close proximity from further oxidation.

Water-Soluble vs. No-Clean

No-clean flux chemistries are generally rosin/resin-based (hereafter referred to only as resin) formulas. Because resins are not very soluble in the solvents used in water-soluble flux chemistries, they are typically replaced with large molecular compounds, such as polymers, in water-soluble fluxes. The activator(s) within the flux chemistry removes the current oxides on the joining surfaces, as well as the solder paste powder particles within the solder paste itself. Further oxidation/re-oxidation does occur during the heating stage. Whereas the resins in no-clean fluxes are excellent oxidation barriers and protect against re-oxidation, the lack of resins in water-soluble chemistries cause them to fall short in terms of providing oxidation resistance.

Hence, for the same reflow profiles—though water-soluble chemistries are generally more active—the lower oxidation resistance of water-soluble chemistries makes them more sensitive in long and/or hot profiles, increasing the potential for graping defects.

Ramp-To-Peak vs. Soak

For many years, the “soak type” reflow profile was quite prevalent. Over time, however, focus has shifted to ramp-to-peak (RTP) as the preferred reflow profile. Contributing to this shift is the higher reflow process temperatures associated with Pb-free solders, as well as the need to diminish the total heat exposure of the smaller paste deposits and temperature-sensitive components and board laminate. Another benefit of the soak profile is its utilization to reduce voiding. However, it is not as effective with Pb-free solders, due to the increased surface tension of Pb-free solders and the higher temperature used to reflow them.

To minimize graping, a reduced oven time is better, provided you use the same time-above-liquidus (TAL) and peak temperature, see Figure 3. The soak profile typically produces more graping than an RTP profile. The graping effect is exacerbated as the total time in the oven increases. Decreasing the total heat dramatically decreases the graping effect. A ramp rate (from ambient to peak) of 1°C/second is commonly recommended, which equates to approximately 3 minutes, 40 seconds to a peak temperature of 245°C.

Figure 3. Typical reflow Pb-free profiles.

Conclusions

To reduce the graping effect, it is vital to ensure an optimal printing and reflow process. Using the guidelines provided for the area ratio and good process/equipment setup will ensure good transfer efficiency. Though the area ratio for circular and square aperture designs may be equal, the potential for graping increases with circular aperture designs due to decreased paste volume and decreased transfer efficiency.

From a reflow standpoint, decreasing the total heat input will decrease the likelihood of the effect. Using an RTP-type profile with a ramp rate of ~1°C/second is suggested.

Material factors also influence the outcome. The observance of graping increases as the solder paste particle size decreases and the area of surface oxides increases. Water-soluble solder paste chemistries do not provide the oxidation barrier that resins do for no-clean chemistries and are more prone to the graping effect.

Cheers,

Dr. Ron

# Tin Pest in Medieval Culture

Folks,

Readers may remember that I have had an interest in tin pest for some time. Tin pest can occur if nearly-pure tin is exposed to cold temperatures (<13.2oC) for long periods of time. At the end of this post, I provide a short summary of the tin pest phenomenon. See this striking time lapse video of tin pest forming; I assume the time period is over many months.

The reason for this post is that a medieval scholar, Beata Lipi?ska, from Poland is studying tin pest and its effects on medieval culture, most notably in church organ pipes. She has contacted me to see if I can help her find papers that discuss tin pest from a historical point of view. If readers have any references that could help Beata, please contact her directly at [email protected].

What is Tin Pest?
Tin is a metal that is allotropic, meaning that it has different crystal structures under varying conditions of temperature and pressure. Tin has two allotropic forms. “Normal” or white beta tin has a stable, tetragonal crystal structure with a density of 7.31g/cm3. Upon cooling below 13.2oC, beta tin slowly turns into alpha tin. “Grey” or alpha tin has a cubic structure and a density of only 5.77g/cm3 . Alpha tin is also a semiconductor, not a metal. The expansion of tin from white to grey causes most tin objects to crumble.

The macro conversion of white to grey tin takes on the order of 18 months. The photo, which is likely the most famous modern photograph of tin pest, shows the phenomenon quite clearly.

This photo is titled “The Formation of Beta-Tin into Alpha-Tin in Sn-0.5Cu at T <10oC” and is referenced from a paper by Y. Karlya, C. Gagg, and W.J. Plumbridge, “Tin Pest in Lead-Free Solders,” in Soldering and Surface Mount Technology, 13/1 [2000] 39-40.

This phenomenon has been known for centuries and there are many interesting, probably apocryphal, stories about tin pest. Perhaps the most famous of stories is that of the tin buttons on Napoleon’s soldiers’ coats disintegrating from tin pest while on their retreat from Moscow. Another common anecdotal story during the middle ages was that Satan was to blame for the decline of the tin organ pipes in Northern European churches, as tin pest often looks like the tin has become “diseased”.

Initially, tin pest was called “tin disease” or “tin plague”. I believe that the name “tin pest” came from the German translation for the word “plague” (i.e., in German, plague is “pest”).

To most people with a little knowledge of materials, the conversion of beta to alpha tin at colder temperatures seems counter-intuitive. Usually materials shrink at colder temperatures; they do not expand. Although it appears that the mechanism is not completely understood, it is likely due to the grey alpha tin having a lower entropy than white beta tin. With the removal of heat at the lower temperatures, a lower entropy state would likely be more stable.

Since the conversion to grey tin requires expansion, the tin pest will usually nucleate at an edge, corner, or surface. The nucleation can take 10’s of months, but once it starts, the conversion can be rapid, causing structural failure within months.

Although tin pest can form at <13.2oC, most researchers believe that the kinetics are very sluggish at this temperature. There seems to be general agreement in the literature that the maximum rate of tin pest formation occurs at -30o to -40oC.

Cheers,

Dr. Ron

# How Far Can We Go to Replace Lead?

The end is nigh for lead in solder, as our columnist Tim O’Neill writes this month in CIRCUITS ASSEMBLY.

Rules governing use of the materials — Directive 2015/863, aka RoHS 3 — are coming online and will be in full force by 2019.

Suppliers have until July 22, 2019 to meet the stricter provisions, which includes no more than 0.1% lead in medical devices, which are joining consumer, industrial and other electronics products on the effectively banned list.

The question Tim poses is, What comes next? Already, the future of commonplace unleaded alloys such as SAC is being questioned. As Tim writes, “It is even feasible SAC 305 will be dislodged by a new de facto alloy that better serves the needs of the market.”

A Norwegian scientist believes he may have the answer. As noted in Phys.org this week, Dr. Henrik Soensteby of the University of Oslo is working on an alternative alloy that contains nothing but common — and essentially benign — elements. In conjuring up his alloy, Soensteby is mixing sodium, potassium and oxygen with niobium, a very strong metal typically used in steel. While niobium dust is reported to cause eye and skin irritation, it reportedly is nontoxic, at least in the volumes used.

It’s not so clear yet how much niobium would be needed. Brazil is the biggest supplier of niobium, producing more than 85% of it each year. Other sources include Zaire, Russia, Nigeria and Canada. World production is relatively light: around 25,000 tonnes per year. Some scientists believe there are ample supplies still in the ground. There’d better be: Some 5 million tonnes a year of lead ores are mined each year, although obviously not all that goes into electronics.

Soensteby is optimistic he can use atomic layer deposition (ALD), a vapor phase method that uses gas at controlled temperatures to stimulate a reaction with the substrate; the output is thin films. It is an emerging technology in semiconductor manufacturing. There are many, many questions, of course. First and foremost, does the alloy actually, you know, work? Also, ALD typically involves higher temperatures than are used in electronics assembly: Would it work with today’s packaging? Will other technologies such as 3D printing or Joe Fjelstad’s solderless Occam process supplant the need for solder in any form?

Still, materials science is the most exciting area of electronics today. We may make fun of folks who walk around with smartphones seemingly permanently tethered to their ears, but we also have them to thank.

Register now for PCB West the Silicon Valley’s largest PCB industry trade show: pcbwest.com! Now with full-day electronics assembly tutorials!

# Electricity Use in Pb-Free

Folks,

An obvious disadvantage of lead-free electronics soldering assembly is that the oven must be hotter and therefore will use more electricity (versus SnPb37 soldering). But is the extra amount of electricity significant?

KIC’s Brian O’Leary claims that a typical SMT oven uses \$7,000 worth of electricity a year at \$0.072/Kilowatt hour (Kwh) or about 100,000 Kwh. That number strikes me as about right, as a household uses about 5-20,000 Kwh per year.

In the late 1990s there were 35,000 SMT lines in the world. At a 3% growth rate that would be about 50,000 lines now. So worldwide SMT reflow oven use would be about 5E9 KWhr (50,000 ovens x 100,000 Kwh/per year) worldwide.