How Far Can We Go to Replace Lead?

The end is nigh for lead in solder, as our columnist Tim O’Neill writes this month in CIRCUITS ASSEMBLY.

Rules governing use of the materials — Directive 2015/863, aka RoHS 3 — are coming online and will be in full force by 2019.

Suppliers have until July 22, 2019 to meet the stricter provisions, which includes no more than 0.1% lead in medical devices, which are joining consumer, industrial and other electronics products on the effectively banned list.

The question Tim poses is, What comes next? Already, the future of commonplace unleaded alloys such as SAC is being questioned. As Tim writes, “It is even feasible SAC 305 will be dislodged by a new de facto alloy that better serves the needs of the market.”

A Norwegian scientist believes he may have the answer. As noted in Phys.org this week, Dr. Henrik Soensteby of the University of Oslo is working on an alternative alloy that contains nothing but common — and essentially benign — elements. In conjuring up his alloy, Soensteby is mixing sodium, potassium and oxygen with niobium, a very strong metal typically used in steel. While niobium dust is reported to cause eye and skin irritation, it reportedly is nontoxic, at least in the volumes used.

It’s not so clear yet how much niobium would be needed. Brazil is the biggest supplier of niobium, producing more than 85% of it each year. Other sources include Zaire, Russia, Nigeria and Canada. World production is relatively light: around 25,000 tonnes per year. Some scientists believe there are ample supplies still in the ground. There’d better be: Some 5 million tonnes a year of lead ores are mined each year, although obviously not all that goes into electronics.

Soensteby is optimistic he can use atomic layer deposition (ALD), a vapor phase method that uses gas at controlled temperatures to stimulate a reaction with the substrate; the output is thin films. It is an emerging technology in semiconductor manufacturing. There are many, many questions, of course. First and foremost, does the alloy actually, you know, work? Also, ALD typically involves higher temperatures than are used in electronics assembly: Would it work with today’s packaging? Will other technologies such as 3D printing or Joe Fjelstad’s solderless Occam process supplant the need for solder in any form?

Still, materials science is the most exciting area of electronics today. We may make fun of folks who walk around with smartphones seemingly permanently tethered to their ears, but we also have them to thank.

 

Register now for PCB West the Silicon Valley’s largest PCB industry trade show: pcbwest.com! Now with full-day electronics assembly tutorials!

 

Electricity Use in Pb-Free

Folks,

An obvious disadvantage of lead-free electronics soldering assembly is that the oven must be hotter and therefore will use more electricity (versus SnPb37 soldering). But is the extra amount of electricity significant?

KIC’s Brian O’Leary claims that a typical SMT oven uses $7,000 worth of electricity a year at $0.072/Kilowatt hour (Kwh) or about 100,000 Kwh. That number strikes me as about right, as a household uses about 5-20,000 Kwh per year.

In the late 1990s there were 35,000 SMT lines in the world. At a 3% growth rate that would be about 50,000 lines now. So worldwide SMT reflow oven use would be about 5E9 KWhr (50,000 ovens x 100,000 Kwh/per year) worldwide.

With most heat loss be due to convection, the increase in energy use will be approximately proportional to the difference between the oven temperature and the room temperature (25°C). An oven processing tin-lead solder would run at about 210°C versus lead-free’s 250°C. So the added energy for a lead-free oven would be about (250-25)/(210-25), or about 22% more. So if all assembly lines in the world are SMT the added energy use would be about 0.22x 5E9 Kwh = 1E9 Kwh. The cost of this extra electricity would be about $100 million at $0.10/ Kwh. The electronics industry generates about $1.5 trillion in sales. So this added cost would be about 0.0067% of sales. Since world electrical use is about 150,000 E9 Kwhr per year, this increase is about 1/150,000 of all of the electrical use or 0.00067%.

So although more electricity is used, the increase is not significant to the value of the electronics sold or the total world use of electricity.

Best Wishes,

Dr. Ron