Rethinking the Supply Line

The PCB fabrication industry is older than most of us still working. It is overdue for modernization. We have not seen transformational manufacturing changes in the PCB bare board industry during the past 15 years.

What we have seen is the installed capacity moved to China. It has been reported that 60% of global board fabrication now comes from mainland China or Taiwan. This move created a forced shift in how boards are purchased, and consequently created new demands in communication and logistics. Specifically, language, time zone, and cultural considerations. Bigger companies with China-based feet on the ground could adapt easily; the rest of us had to learn new skills.

I am suggesting that the rest of us modernize and rethink our supply line strategy.

Some may remember the evolution of the electronics component industry. First, component manufacturers sold directly to OEMs. Gradually, customers and component manufacturers found that a better path was through a local distributor. Arrow, Avnet, Future, DigiKey, and many others were born out of this efficiency. Today, it is an exception to buy directly from a component manufacturer.

PCB fabrication is difficult for distributors because every board is custom. Repeat: every board is custom. Custom equals high potential for error, which equals close technical review required.

So, buyers must go to China directly and slog through the variety of China sources. With this come the multiple challenges of accountability, communication, logistics and culture. The most dangerous of the challenges is having picked a supplier that occasionally (or often) sends subpar boards and provides no recourse or no response to your complaint. Do you really want to commit such a critical part of your BoM to the lowest China bidder?

The modernization of the PCB industry is not in processing, but in supply chain. A new category of value-added distributor is evolving in the same way the component distributor evolved … to make things easier. We call it “Managed Manufacturing Services.”

Think of it as a value-added distributor of printed circuit boards. This concept can greatly improve the supply chain for both customer and China manufacturer, but only if they really add value.

What are the important values, and how does this approach add value?

Technical support. The value-added distributor must be your expert design reviewer, capable of counseling you and quickly fixing the errors.

Only technically trained PCB teams really understand the manufacturability challenges of bare boards. With the technology of new IC packages pushing toward smaller geometries, new thinking is required about designing for manufacturability. So, your value added distributor has to be technically trained to provide this service.

Communication. The value-added distributor must be capable of clearly and cleanly communicating with a factory in a different country.

We have been working with offshore factories for a long time. We learned through hard knocks that developing a strong relationship with your counterpart in Asia is critical. I call it “Pitcher-Catcher.” Whether a fastball or a curveball, the two communicate in one cohesive motion. This takes time to develop and not every factory gets it.

Time zones can work to your advantage. We pitch everything to China by 5 pm Pacific and have answers at 6 am the next day. Your distributor must know the factory requirements well enough that only a few questions (EQs) come back, lessening the need for middle of the night conference calls.

Accountability. Your value-added distributor must have carefully vetted and audited the factories they use. They must be US corporations with financial accountability to their customers.

Slogging through a variety of factory options is not a good idea. Jumping from one to the next based on price and email pressure is also not a good idea. It wastes time and invites disastrous quality issues. Customers with little or no knowledge of what makes a solid factory are at particular risk. Yet most customers fall into this category.

If you have someone on staff with experience in this area, you can send them to China to visit multiple factories, but unless this person has in-depth knowledge of what makes the difference between okay and fantastic at the granular level, it is waste of $10,000. It takes deeply experienced people to see the difference. It takes board manufacturing experience.

From the China manufacturer’s side, it is just like the component manufacturers of old. It is much more efficient to deal with a small handful of companies who service the US market than it is to staff and service everyone. The culturally smart ones are beginning to see this and actually do view us as distributors for them. It is a proven supply-chain solution.

Following the model of the component distributors, we can modernize this PCB industry. We can improve efficiency, quickly adopt new technologies, and capture lower costs all by modernizing the supply chain. Welcome the value-added PCB distributor, or as we call it Managed Manufacturing Services.

Thomas Smiley is president, Precision PCBs; [email protected].

Area Ratios for Elongated “D” Apertures

Folks,

Ismail writes: Dr. Ron, I know that the area ratio for circular and square stencil apertures is 4d/t.  What is it for an elongated “D” aperture?

 

The area ratio of a stencil aperture is the area of the aperture opening divided by the area of the side walls.  It is interesting, as Ismail points out, that the area ratio of a circular aperture is the same as that of a square aperture.  A little 10th-grade geometry will point this fact out.  It ends up that the area ratio of an elongated “D” is a little more complex.  All of these aperture shapes and that for a rectangle aperture are shown in Figure 1.   The area ratio formulas are at the bottom of the figure.

 

Figure 1. The area ratio for several shaped apertures. The elongated “D” aperture is third from the left.

 

 

 

 

 

 

 

 

 

A rule of thumb that still seems to hold is that the area ratio should be 0.66 or greater for the best printing result.  It is possible to do somewhat better (i.e with an area ratio less than 0.66) with a superior solder paste and/or some of the new stencil nano-coatings.

The derivation of the area ratio for the elongated “D” is in Figure 2.

Figure 2.  The derivation of the area ratio for an elongated D shaped aperture.

 

 

 

 

 

 

 

Cheers,

Dr. Ron

 

Hacking the Hacks

Wikileaks this week released a trove of materials purportedly from the CIA which demonstrate a range of methods used for spying on unwitting individuals. Among the revelations were how-to’s on accessing (read: hacking) most popular operating systems including Android and Apple. The CIA, it is alleged, has figured out how to bypass the encryption on a host of common apps including Signal, WhatsApp and Telegram, and even get around many antivirus programs designed to spy on the spies.

As it turns out, that TV set you have hanging on your family room wall might well be watching you. Worse, it was intimated that a vehicle’s electronics system could be hacked, rendering the car uncontrollable — with potentially devastating consequences.

It doesn’t take much to make the leap from hacking consumer and automotive electronics to overtaking machine language software systems. And that should be of paramount importance to those working on industry standards for Industry 4.0, including IPC’s Shop Floor Communication Standard Subcommittee and Mentor Graphics (OML).

As important as machine-to-machine (M2M) communication is, security should be the priority.

 

 

Let’s Talk about HAL – And Another Thing

A few days ago, I wrote about HASL PC board surfaces, explaining that it’s not an appropriate choice for small parts.

Look at the same PCB image I used the other day. You might not recognize it because before it was on the right, and today it’s on the left. Getting past the fact that I just insulted everyone’s intelligence, there is something else about this board that we don’t recommend.

I’ll give you 30 seconds to figure it out. I don’t have a stopwatch, so the 30 seconds is on the honor system.

This is a land for a 0.5mm pitch BGA. As I wrote before, HASL is not the right choice for BGAs, especially for those of the smaller pitch variety. The other problem with this board is in the pad layout.

These are solder mask defined (SMD) pads – the solder mask covers the outer part of the pad, so the solderable copper surface is determined by the size of the opening in solder mask, not by the area of the copper pad.

For BGAs 0.5 mm pitch and larger, we (and pretty much everyone else) recommend non-solder mask defined (NSMD). With a NSMD pad, the solder mask opening is larger than the pad. This leaves more copper area to adhere to, including the sides of the copper pad. It tends to be much more reliable.

The image to the right illustrates the difference. 

The left-most pad in the image illustrates an SMD pad, while on the right is an NSMD pad. The NSMD pad leaves a lot more surface area of the copper pad for the solder ball to grip on, including the sides.

BGAs with 0.4mm pitches might need either SMD or NSMD pads, depending on a number of circumstances. Read this blog information for a bit more on 0.4mm. When in doubt, look in the back of the datasheet.

Duane Benson
Question for physicists and mathematicians:
Should the last recursion in the Mandelbrot set land on Plank’s constant?
Show your work.

http://blog.screamingcircuits.com

 

Let’s Talk about HAL – For Big Parts Only

The board surface names: HAL and HASL (hot air leveling and hot air surface leveling) refer to the same thing. They are interchangeable terms. With that out of the way, I’ll get to my point, which is that HASL is not the right surface for all applications.

Take a look at the photo on the right. This is a 0.5 mm pitch BGA land, using lead-free HASL. Don’t expect good results with this board. It’s a good quality HASL board. Even the bumps on the pads are not out of line for a HASL PC board. It’s not a defect. It’s the HASL works.

The catch is that, while the PC board is perfectly good, it’s not the correct board surface to use for all parts. HASL is fine for larger parts, but for small components, it’s archaic and not reliable.

BGAs require a flat surface (also called a planar surface). With the bumps common on HASL boards, the BGA won’t have a flat surface. The solder paste won’t adhere evenly to the pads. The BGA will probably slide off the pads before reflow. It may end up far enough off that it can’t self-center, as BGAs usually do.

The HASL pads won’t all have an even amount of solder left on the board. Some pads will have more, some less. When added to the solder paste, the pads with more solder may end up bridging.

All of the issues become even more severe as the parts get smaller. Wafer scale parts, 0.4 mm pitch parts, 0201 passives, and other similarly or smaller sized components are essentially incompatible with the HASL surface.

So, what do you do? Order your boards with immersion silver or ENIG. Both give a nice flat surface that BGAs like.

Duane Benson
Open thse Posd Basy Doors Hasl

http://blog.screamingcircuits.com

Milling Madness

Sometimes, we find things that kind of defy explanation. Fortunately, this didn’t come from Sunstone, our normal board house.

Regardless of who it came from, I’m sure it was a one-off mistake, but, wow. How could anyone miss this?

 

 

 

 

 

 

 

 

 

It just goes to show, it’s always a good idea to take a look at what you get from your board house before sending it on to us.

Duane Benson
Termites, maybe?

http://blog.screamingcircuits.com